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Towards Embedding Dynamic Personas in
Interactive Robots: Masquerading Animated Social
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Abstract—This paper presents the design and development
of an innovative interactive robotic system to enhance audi-
ence engagement using character-like personas. Built upon the
foundations of persona-driven dialog agents, this work extends
the agent’s application to the physical realm, employing robots
to provide a more captivating and interactive experience. The
proposed system, named the Masquerading Animated Social
Kinematic (MASK), leverages an anthropomorphic robot which
interacts with guests using non-verbal interactions, including
facial expressions and gestures. A behavior generation system
based upon a finite-state machine structure effectively conditions
robotic behavior to convey distinct personas. The MASK frame-
work integrates a perception engine, a behavior selection engine,
and a comprehensive action library to enable real-time, dynamic
interactions with minimal human intervention in behavior design.
Throughout the user subject studies, we examined whether the
users could recognize the intended character in both personality-
and film-character-based persona conditions. We conclude by
discussing the role of personas in interactive agents and the
factors to consider for creating an engaging user experience.

Index Terms—Social HRI; Gesture, Posture and Facial Expres-
sions; Design and Human Factors

I. INTRODUCTION

Interactivity in robots [1], [2], [3] can establish meaning-
ful connections with humans, thereby greatly improving the

Manuscript received: March 14, 2024; Revised June 25, 2024; Accepted
July 22, 2024.

This paper was recommended for publication by Associate Editor T. Asfour
and Editor G. Venture upon evaluation of the reviewers’ comments. This work
was supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
(No. RS-2019-II190079, Artificial Intelligence Graduate School Program
(Korea University); No. 2022-0-00871, Development of AI Autonomy and
Knowledge Enhancement for AI Agent Collaboration; and No. RS-2024-
00336738, Development of Complex Task Planning Technologies for Au-
tonomous Agent).

1Jeongeun Park, Taemoon Jeong, Hyeonseong Kim, Taehyun Byun,
Seungyoun Shin, and Sungjoon Choi are with Department of Artificial
Intelligence, Korea University, Seoul, Republic of Korea {baro0906,
taemoon-jeong, hyeonseong-kim, taehyun-byun,
2022021568, sungjoon-choi}@korea.ac.kr

2Keunjun Choi is with the Rainbow Robotics, Daejeon, Republic of Ko-
rea keunjun.choi@rainbow-robotics.com . This work was
conducted while at NAVER LABS.

3Jaewoon Kwon and Taeyoon Lee are with the NAVER
LABS, Seongnam, Republic of Korea {jaewoon.kwon,
ty-lee}@naverlabs.com

4 Matthew Pan is with the Ingenuity Labs Research Institute and Depart-
ment of Electrical and Computer Engineering, Queens University, Kingston,
Canada matthew.pan@queensu.ca

Project page: https://mask-robot.github.io.
Digital Object Identifier (DOI): see top of this page.

user experience by creating engaging relationships. Integrating
character-like attributes into these robots makes interactions
more human-like and relatable, enhancing emotional connec-
tions and creating memorable experiences. Interactive robots
embedded with customizable personas can offer companion-
ship for combating loneliness or deliver standout performances
in the entertainment sector. Leveraging this potential, we focus
on building an interactive robotic system that takes a step
towards adapting flexible personas that can take on the likeness
of personalities or film characters.

Building character-like or persona-driven dialog agents [4],
[3] have been actively studied to provide users with agents that
experience events, express emotions, and interact with people.
We believe interactive robotic agents could bring such agents
into the real, physical world. Combining physical movements
- i.e., gaze and gestures - with persona-driven agents can
amplify the richness of human-machine interactions.

We hypothesize that by embedding a character template into
robotic behavior, interactive agents can convincingly embody
distinct personas for users to engage with. In particular, we
aim to achieve this through a simple finite-state machine
framework, which determines robotic actions from an observed
user’s behavior, a current robot’s behavior, and a persona. We
focus on non-verbal communication, where the social cues
come from gestures, gazes, or facial expressions. For instance,
if a robot demonstrated actions representing fear when the
user is greeting it, the users would be led to associate a “shy”
or “introverted” character with the robot. Furthermore, our
system aims to easily adopt diverse personas, similar to a robot
putting on and switching masks, requiring minimal human
effort to design such robots.

The system comprises the integration of three key compo-
nents [1]: a perception engine that extracts meaningful features
from users’ 3D body pose, a behavior selection engine that
selects appropriate robotic behavior within the context, and
an action library housing a collection of robot motions and
facial expressions. We introduce a persona-infuser module
to automate the process of generating behavior transitions
with non-verbal cues and a given persona leveraging large
language models (LLMs) [5], which is utilized in the behavior
selection engine. Notably, our framework enables minimal
human intervention in behavior selection design, enabling
the swift creation of interactive robotic agents imbued with
distinct personas through textual input. Additionally, we enable
functionality to imitate well-known movie characters where

https://mask-robot.github.io.
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robots can harness familiarity of their personas to allow users
to quickly identify the characters being imitated, significantly
enhancing user engagement and acceptance.

To test our system, we recruited 162 participants to analyze
a persona-driven robot showcased in a public cafe. Results
show the participants could recognize the robot’s given per-
sona in both personality and film character-based persona
agents with captivating experiences. Based on participants’
post-study comments, we identified opportunities and chal-
lenges in designing persona-based interactive robots.

II. RELATED WORK

The influence of an agent’s persona on a user’s experience
has been actively explored in various domains, including
robotics applications [6] and dialog agents [7], [8], [9]. Several
papers [6], [2], [3], [10] have focused on building personality-
driven agents to provide the user’s engaging experience. Van
Otterdijk et al. [2] focused on developing robot personalities
expressed through nonverbal cues with distinct personality
traits like extroversion and introversion. Mohammadi et al. [3]
investigated whether a robot with a socially engaged person-
ality is more accepted than one with a competitive personality
through a case study involving a dice game. In addition,
Moujahid et al. [10] introduced Charlie, a stationary robot
receptionist designed to interact verbally and non-verbally
in dynamic environments, focusing on how different robot
personalities, specifically introversion and extroversion, affect
human behaviors. However, previous work on robotic personas
has often been restricted by the need for manual design of
personalities by experts. In contrast, this work utilizes large
language models (LLMs) to automate the adaptation of various
personas, including personality and fictional characters. This
approach reduces human effort and enhances the flexibility of
persona development, particularly in automating the process
of creating behavior models through finite-state machines.

Prior studies [7], [8], [9] have explored the ability of
language models to adapt specific personas or personalities.
Safdari et al. [8] discussed the impact of synthetic personality
in large language models (LLMs) on conversational agents,
introducing a method for assessing and validating personality
tests on LLMs and for influencing the personality in LLM-
generated text. Lee et al. [9] demonstrated distinct LLM-
based behaviors that enable more authentic and context-aware
human-robot interactions by integrating non-verbal cues. How-
ever, the approach has limitations in the latency of requesting
API calls, and the explored persona was dialog-centric rather
than the character or style of the robot.

Non-verbal cues play a significant role in conveying emo-
tions and intents in communications. Non-verbal communi-
cation can be composed of gaze, gestures, or intonation.
Pan et al. [1] introduced a system that combines advanced
gaze interaction technology and character animation principles
with human-like gaze behaviors. Ko et al. [11] focused on
the motion of the robot to learn and generate the social
behavior given the human pose. Brock et al. [12] presented
a real-time hand gesture recognition system to facilitate close-
distance non-verbal communication with the tabletop robot

Human Observation (72)

# Raised Hands ∈ {0,1,2},
Distance ∈ {close,far}

Gaze ∈ {gaze, no gaze}
hand velocity ∈ {waving, not waving}
approaching ∈ {approach, static, leave}

Robot

Motion (13)

1. wave hand big 2. wave hand small
3. look around 4. attract to come closer

5. small bow 6. cry 7. push away
8. hide away 9. read book 10. standstill

10. yawn 11. teasing 13. cross arms

Facial
Expression (12)

1. neutral 2. smile 3. cry
4. angry 5. scared 6. excited

7. reading book 8. confused 9. yes
10. tongue out 11. yawn 12. nod head

TABLE I: Non Verbal Cues. The cues for human observation
include four factors with 72 possible combinations, while robot
cues contain 13 motions and 12 facial expressions with 156
possible combinations.

Haru. Aligning with the mentioned importance of non-verbal
communication in HRI, we aim to build a system incorporating
personas via non-verbal communication.

In our setup, visitors can interact with the robot non-verbally
through body language. We hypothesize that interactive agents
can convincingly embody distinct personas by selecting the
next behavior appropriate to the user’s non-verbal cues and
to the robot’s assigned personas (i.e., personalities or fictional
characters). For instance, users could recognize the robot as
“uncooperative” persona after observing the robot rejecting
the user’s greeting.

III. PROPOSED METHOD

This section describes technical details for automating the
design process in a persona-based interactive system. The
system’s architecture, as depicted in Figure 1, contains three
main modules: a perception engine, an action library, and a
behavior selection engine. At runtime, the perception engine
estimates the 3D body poses of users seen in the environment
via the Zed2i camera and refines human pose information to
discrete observations and is used to obtain a “curiosity score”.
This data is used by the behavior selection engine, which
contains the state machine defining the robot’s persona-infused
behavior. In the behavior selection engine, the robot selects
the subsequent motion and the corresponding facial expression
based on the observation and the current state. The engine’s
behavior database maps observations and the robot’s persona
to specific state-action transitions. This behavior database is
pre-built and populated by a persona-infuser, which leverages
large language models [5] to construct these transitions au-
tonomously, alleviating the need for manual design. Finally,
with the selected behavior, the robot physically displays the
motion and the facial expressions that are stored within the
action library.

A. Non-Verbal Cues

MASK employs non-verbal communication for human-
robot interaction, with users interacting with the robot through
body poses (p). As such, we examine non-verbal cues gener-
ated by non-verbal cues (presented in Table I) to drive the
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Fig. 1: The proposed system architecture. The system is composed of a perception engine, a behavior selection engine, and
an action library, where the action library and the behavior databases are pre-built components.
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Fig. 2: Illustration of the proposed Persona Infuser, which
generates the behavior database via LLM.

interaction. Human non-verbal cues (observations o(p)) are
defined as elements; e.g., number of raised hands, distance
between human and robot, is human gazing at the robot, and
hand velocity. These elements form the observation space (O),
encompassing all possible combinations of each observation
element. Robots’ reactions utilize a discrete set of generated
motions and facial expressions, which is the state space (S ),
also presented in Table I. The state compromises the 156
possible combinations of 13 different motions and 12 different
facial expressions.

B. Automated Persona Infuser via LLMs

In the quest to embed robots with distinct personas, we
introduce a persona infuser that constructs a behavior database.
This database, D , acts as a blueprint for persona-driven behav-
ior, encoding all possible combinations of states, observations,
and transitions by large language models [5] (LLMs). The
database is pre-built prior to runtime to reduce potential
latency from language model inference, ensuring smooth and

responsive robot actions. We utilize gpt-4-0613 model1

for our MASK system and our experiments. The input of
the LLM [5] becomes the defined state space S , observation
space O , and the persona xp. Conditioned with the men-
tioned inputs, the LLM estimates the state transitions D =
{T (s′|s,o)}s∈S ,o∈O . The behavior database is formulated as a
dictionary. We design a hierarchical structure for generating
behavior transitions as illustrated in Figure 2.

a) Motion Selection: We first utilize LLMs to predict
the set of motions relevant to a given persona. This procedure
helps the system filter out the states unrelated to the persona.
The input of the LLM, denoted as pθ , includes the robot’s mo-
tion cues M , the target persona xp, and the motion selection
prompt xmotion. In the motion selection prompt, we enable the
LLM to select between 0.25M and 0.5M different motions,
where M = 13 is the number of motion cues. The predicted
set of motions m is defined as

m ∼ pθ (m|M ,xp,xmotion). (1)

b) Expression Integration: In this step, we establish state
s that pairs each selected motion (m) with a corresponding
facial expression ( f ). LLM estimates the matching facial
expression conditioned on motion, iterating the estimation
through the selected motions m. The state s is defined as
a pair of faces and the motion, and is as follows: s =
( f ,m) where f ∼ pθ ( f |m,F ,xp,xstates), m ∈ m, xstates is
a prompt for expression integration, and F is a pre-defined
set of facial expression cues. The set of states is denoted
as s = {( f ,m)}m∈m. In addition, we utilize LLMs to define
an initial state s0 ∼ pθ (s0|s,xp,xinit), where xinit is a prompt
for defining initial state. The textual inputs of the states are
designed as the names of the motion to simplify the notations
to LLM.

c) Transition Estimation: Based on the persona-based
state sets s, we estimate the state transitions T (s′|s,o) via
LLMs. To infer the robot’s next state, we repeat our evaluation
process for each combination of current states (|s|) and obser-
vations (|O|), resulting in numerous iterations. We formulate

1https://platform.openai.com/docs/models
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the deterministic state transition, where LLMs directly esti-
mate the next state s′ given current state s and observation o.
The input of LLM is a state set s from the previous paragraph,
the target persona xp, current observation o, current state s, and
the state transition prompt xtransition. The transitions are defined
as follows:

T (s′|s,o) =

{
1 if s′ = s′LLM

0 otherwise
(2)

s′LLM ∼ pθ (s′|s,o,s,xp,xtransition) (3)

where s ∈ s and o ∈O . Again, we iterate this process to cover
all observation and state spaces.

C. Perception Engine
During the real-time deployment phase, the perception

engine detects the user’s body pose to determine the user’s
state. The input of the perception engine is an RGBD image,
and the output is the observation and a curiosity score (a
score that describes how ‘interesting’ a person is based on
observed kinematic quantities as used in [1]) for each person.
The camera stays stationary during the interaction, and the
3D body pose of the users with tracking is estimated via ZED
SDK 4.02.

For each individual, we transform body skeleton data into
five observation categories: the number of hands raised above
nose level, eye gaze (based on a gaze function g(p) threshold
tg), distance (‘close’ or ‘far’ relative to threshold td), hand
movement speed (‘waving’ or ‘not waving’ determined by a
hand velocity threshold tv), and approaching velocity (v̂Lv

noses
classified as ‘approaching,’ ‘leaving,’ or ‘static’ based on
threshold ta). The gaze function g is defined as the cosine of
the angle between the normal vector to the plane formed by
the nose and both eyes (left and right) and the position vector
of the nose, effectively providing a measure of the direction
in which the nose is pointing relative to the plane of the eyes.
For the approaching velocity, we track the Lv second of the
nose pose to determine whether the user is getting closer to
the robot. These observations are summarized for each person
as o(p) in Table I.

The curiosity score determines which user to interact with in
multi-person scenarios, indicating how interested each user is
to the robot. Following previous work [1], the curiosity score
Φ for each person is defined as follows:

Φ(p) = Θ(t) ·
(
wd∥pnose∥+wh(hright hand +hleft hand)+

wv(v̂right hand + v̂left hand)+wgg(peyes)+wav̂Lv
noses

) (4)

where p is a body pose, wd ,wv,wh,wg is a weight for dis-
tance, hand velocity, hand raise, and gaze, respectively. The
curiosity score is composed of four elements: a distance from
the robot ∥pnose∥, an indicator that determines raising hand
hright hand,hleft hand, a hand velocity v̂right hand, v̂left hand, a gaze
parameter peyes, and an approaching velocity v̂L

nose. Θ is a
habituation factor at the time t, which penalizes curiosity
score for short observations. As mentioned in the previous
paragraph, g and Lv are the gaze functions and approaching
velocity.

2https://www.stereolabs.com/docs/body-tracking/

D. Behavior Selection Engine
The behavior selection engine selects the next states situated

within the context. Based on observations, the robot’s current
state, and the behavior database, the selection engine selects
the next state and the user to interact with. The user to interact
with is determined via curiosity score. As curiosity in equation
4 represents the curiosity from the current user’s motion; we
introduce a refined model for natural turn-taking. This model
dynamically adjusts curiosity levels based on interaction time,
decreasing curiosity for individuals who have already engaged
with the robot and increasing it for those who have not. The
refined curiosity Φr(p) is defined as follows:

Φ
r(p) = min

({ Φ(p)/(εd(Φ(p)))tin where p = pin

Φ(p) · (εi)
tnn otherwise

,φmax
)

(5)
where tin is a time of interaction with the user for person
p, tnn is a time of non-interaction, and pin is a person
interacting with a robot. εd(Φ(p)) > 1 and εi > 1 are the
decrease rate and increase rate of the curiosity score, and
φmax is a maximum value for the curiosity. We design the
curiosity decrease rate εd(Φ(p)) to be dynamic; the rate
slows down for users expressing strong interest, allowing for
extended interaction. Decisions for state change unfold at
two key points: when changes occur in the observation or
when a person of interest changes. The person of interest,
which denotes a person that the robot is to interact with, is
defined as a person with a maximum curiosity in the scene
pin = argmaxp Φr(p). Then, the next state s′ is predicted by
the behavior database T (s′|s,o(pin)), with the current state s
and the observation from the person of interest o(pin). Finally,
to face the user while interacting with them, we also obtain
the person’s heading direction θpin with respect to the robot
frame. The information about the next state and the heading
direction is then transferred to the action library to display the
robotic action.

E. Action Library
The system is built upon a pre-built action library, where

each state maps to specific joint trajectories and facial ex-
pressions. The action library module expresses the motion
and facial expressions chosen from the behavior selection
engine. Facial expressions are directly displayed on the screen
as emojis. The robot’s motions are obtained from a robust
motion retargeting pipeline that is described in [13] where
human-we recorded the demonstration of the desired motion
suitable for human-robot interaction scenarios. For the robots
to face the user in the correct direction, we gave variants in
the yaw direction at the waist. We have added yaw variants
θw ∈ {−π

3 + π·i
9 }6

i=0 at the waist joints to the original motion
with the collision handling process for every motion. This
process results in 13×7 = 91 motions in the library. We map
the robot’s yaw to the user’s closest orientation during the
runtime. For the inbetweening trajectories for each motion, we
utilize an optimization-based method aware of position and
velocity limits. Each transition trajectory is defined to span
from a second interval of every motion trajectory to the start
of the next trajectory.
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Extroverted and agreeable
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Standstill Cross arms Look around
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Fig. 3: Demonstrations of the system. The first and second rows demonstrate the personality-based persona interaction, while the
third and fourth rows demonstrate the character-based persona interaction. The emojis on the top indicate the facial expression
that is displayed on the robot’s screen. The caption under each image denotes the motion name.

F. Persona-Based Design Outcomes

The snapshot of robotic behaviors based on various personas
is illustrated in Figure 3. In the top row, the robot demonstrates
an extroverted and agreeable persona (based on personalities)
through open and engaging body language, as indicated by
the come hither beckoning and waving hands. In the second
row, the robot adopts an introverted and disagreeable persona,
characterized by a less engaging body language, with arms
crossed and hiding from the interaction partner. In the third and
fourth rows, the robot embodies film characters—the playful
yet mischievous Minions and the Cowardly Lion from “The
Wizard of Oz,” characterized by timid and fearful actions such
as hiding or crying. The final rows feature the robot mirroring
the personas of Scrooge from “A Christmas Carol” and Spock
from “Star Trek,” where Scrooge is represented with irate
gestures, and Spock is depicted with keeping a neutral face to
express an emotionless character. Additional visual materials,
including video demonstrations and figures of the generated
behavior database, are available on the project’s webpage.

IV. EXPERIMENTS

We conducted a human-subjects study to investigate the
capabilities of the proposed method in representing the per-
sona. Our main question is whether our system enabled
users to distinguish robot’s personas while considering the
effects of persona-based interactions on user experience and

engagement. Throughout the experiment, we aim to examine
the hypothesis that the system will enable users to identify the
robot’s persona.

A. Experimental Setup

The platform used in this work is the Ambidex [14], a
tendon-driven mechanism consisting of a head, waist, and
two arms. The robot features 32 degrees of freedom: 12 in
the waist and 10 in each arm, which allows for enhanced
expressiveness in non-verbal communication through body
language. A screen that forms the head of the robot displays
the robot’s facial expressions. An RBGD camera placed at the
robot’s top detects the user’s body pose. The robot is encased
within a transparent acrylic barrier to ensure interaction safety.
For this work, the robot was placed in the cafe in NAVER
17843, a space open to the public.

The experiment was conducted in two phases. In both
phases, participants were asked to freely interact with the
robot for approximately a minute. Following this interaction,
participants were asked to fill out a survey (delivered in
Korean). In phase 1, we first hypothesize that there will be
a significant difference in the user’s recognized personality
between different robot personality types (Introverted / Ex-
troverted, Agreeable / Disagreeable), (H1). The robot was

3https://www.navercorp.com/en/naver/1784
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show-cased with a personality-based persona to examine this
hypothesis. We have chosen extroversion and agreeableness
dimensions from the Big Five personality traits [15], as those
two dimensions in building a social network [16], a key
factor in building captivating personas in the engagement
scenario. To keep the experimental procedure as short as
possible for each participant (as we were surveying people
who were passing by), we opted to use 1-item scale for
each personality trait that is rated on continuous scale from
0 to 100. Four different personas created from two levels of
each factor were used: extroverted and agreeable, introverted
and agreeable, extroverted and disagreeable, and introverted
and disagreeable. In prompting a large language model, the
term “cooperative” was specifically chosen over “agreeable”
for prompt engineering to model behavior more effectively
in scenarios requiring acknowledgment and interaction. A
between-subjects study with 52 participants (gender: M=26,
F=26, ages: 21-57) was conducted where the participants were
asked to answer a questionnaire after interacting with the robot
having one of the persona. S1: Score the extroversion of the
robot (Introverted - Extroverted) S2: Score the agreeableness
of the robot (Disagreeable - Agreeable) S3: What is your
overall satisfaction of the interaction.

During the second phase of our study, we conducted ob-
servational studies on user perceptions as they interacted with
the robot by measuring the classification accuracy of personas.
The robot was endowed with four distinct personas based on
fictional movie characters, including: Ebenezer Scrooge from
A Christmas Carol [17], a Minion from the Despicable Me and
Minions franchise [18], The Cowardly Lion from The Wizard
of OZ [19], and Spock from the Star Trek franchise [20].
We recruited 108 participants (gender: M=47, F=63, ages: 20-
53) to participate in this between-subjects study, where the
personas were randomly assigned to participants with equal
numbers. Participants were asked to interact with the robot
and answer three questions in the following order: S4: List
keywords that describe the robot’s personality or behavior. S5:
Which of the following characters does the robot’s behavior
seem to be most similar to? (multiple choice: The Cowardly
Lion from The Wizard of OZ, A Minion from Despicable Me,
Ebenezer Scrooge from A Christmas Carol, Captain America
from The Avengers, Sloth from Zootopia, Spock from Star
Trek) S6: Rate how well the robot imitates the personality of
the character you selected in the previous question. We also
provided a brief summary of each character’s personality to
help users understand the character mentioned in the choices4.

B. Human Subject Study Results

a) Personality Persona: To test hypothesis 1 (H1), we
conducted a two-way repeated-measures MANOVA on the
results obtained from user survey questions S1 and S2 with
α = 0.05. These questions measure the dependent variables of
extroversion and agreeableness scored by users for a specific
displayed persona and are denoted here as the E-score and
A-score, respectively. The persona is generated on the two

4This research was carried out with ethics approval from the ethics review
board of Korea University under proposal KUIRB-2024-0069-01.

Fig. 4: Results from survey phase 1 with questions S1 and
S2. (a) E-score of extroverted factor and A-score of agreeable
factor. (b) E-score of extroverted persona with agreeable
persona. (c) A-score of agreeable persona with extroverted
persona. Agr., Dis., Ext., and Int. denote agreeable, disagree-
able, extroverted, and introverted personas, respectively. * as
0.01 < p < 0.05, ** as p < 0.01, and *** as p < 0.001. The
error bars represent 95% confidence intervals.

different axes of personality we studied: extroversion and
agreeableness. We observed that the users could recognize
both extroversion and the agreeableness of the robot, as
shown in Figure 4-(a). The measured E-score shows a signif-
icant difference between extroverted and introverted persona
(F(1,48) = 17.27, p < 0.001, partial η2 = 0.265). In addition,
the persona based on agreeableness resulted in a significant
difference in the A-score of the robot (F(1,48) = 35.40,
p < 0.001, partial η2 = 0.424). No significant interaction
effect was detected. We observed that the users feel extro-
verted robots are more agreeable and vice versa, as shown in
Figure 4-(b), (c). This resembles the previous findings from
personality-based robots and psychology that extroversion and
agreeableness are often positively correlated [21], [22]. In
analyzing the satisfaction of the interaction (S3), we conducted
a two-way ANOVA and observed significant differences be-
tween agreeable and disagreeable personas (F(1,48) = 4.799,
p = 0.033, partial η2 = 0.091); users reported being more
satisfied when interacting with agreeable personas. The facial
expressions displayed by the robot helped users understand
the context of the motions, but we failed to find a significant
impact of using facial expressions during pilot studies.

b) Character Persona: We measured the classification
accuracy among characters based on user responses to survey
questions S5 and S6 to examine how accurately users can
identify each persona. We have observed that the participants
could successfully identify the correct movie character with
an average accuracy of 76.7%, 4.6 times higher than random
guess (16.7%). The confusion matrix for classification is
shown in Figure 5, where we have adjusted the user’s fitting
score obtained from the survey question S6. The confusion
matrix Ti j is defined as

Ti j =
∑k

(
s f (k) ·1(ck = ci) ·1(gk = c j)

)
∑k

(
s f (k) ·1(gk = c j)

) (6)

where k is an index of a participants, s f (k) as a fitting score
observed from S6, ck as a chosen character from S5, and gk
as a persona shown to the participant k. We observe that users
could successfully identify the Cowardly Lion from The Wizard
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Fig. 5: Classification Confusion Matrix for the character-
based persona representing the characters Cowardly Lion (LO),
Minion (MM), Scrooge (SC), Spock (SS), Sloth (SZ), and
Captain America (CA), respectively.

of OZ, Minions, and Scrooge characters with great accuracy.
However, participants appeared to misclassify the character of
Spock with Scrooge (0.39). Two participants who interacted
with the Spock persona mentioned that the robot’s firm and
blunt behavior with a neutral face leads users to feel that the
robot is “grumpy”, making it easily confused with Scrooge.

c) Qualitative Result: From S4, the users were asked
to mention the keywords associated with each persona before
answering S5. Again, the survey was conducted in Korean;
the keywords are the closest translations available. Table II
describes the top-three mentioned keywords for each character.
Participants attributed traits matching each character’s known
qualities: “shy” for the Cowardly Lion, “playful” for the Min-
ions, “angry” for Scrooge, and “indifferent” for Spock. These
keywords from S4 indicate that users accurately perceive the
unique characteristics of persona-driven robots.

Throughout the detailed comments, we observe that most
participants could understand the context of the behavior. One
participant commented that “Judging by the constant peek-
a-boo, [the robot] seemed like a friend with a strong sense
of playfulness. Also, since it appeared to yawn when we
didn’t move, it seemed to get bored quickly if not engaged,
representing a mischief character.” after interacting with the
Minion persona. More than half of the participants (15 out
of 27) who interacted with Minions persona commented posi-
tively about active engagement and playful character. We also
observed that some participants created their own stories of the
show, inducing a new interpretation of their behaviors. For the
cowardly lion persona, one participant commented that “The
robot seemed to interpret the action of waving arms as an
act of aggression, taking a defensive posture and shedding
tears as if it was afraid of humans.”. However, another user
reported that “It is impossible to understand the message it is
trying to convey, and I am not feeling the interaction.” after
interacting with Spock, pointing out the lack of interpretability
in unexpressive behaviors.

Persona Keywords
Lion from Wizard of OZ Shy, Coward, Defensive

Minions Naughty, Active, Playful
Scrooge from Christmas Carol Angry, Aggressive, Dislike others

Spock from Startrek Pococurante, Blunty, Cynical

TABLE II: Top 3 mentioned keywords for each persona from
survey question 4 (S4).

V. DISCUSSION

Throughout our user studies, we have shown that the
participants could successfully recognize and distinguish the
robot’s persona in both personalities in Section IV-B0a (52
participants) and characters in Section IV-B0b (108 partici-
pants). In this section, we discuss the lessons learned during
our studies and the main limitations of our work.

a) Human’s Expectation Towards Robot: We found dis-
crepancies in user expectations versus the robot’s behavior,
as most participants were expecting warm and competent
robot behaviors. We observed what appears to be a major
user expectation mismatch regarding disagreeable personas,
resulting in a notable decline in satisfaction levels. This trend
indicates an expectation mismatch, as participants were un-
prepared for disagreeable personas. Furthermore, participants
expected a competent robot that could respond to users rapidly
and proactively. However, with inexpressive characters, such as
the Spock persona where the robot maintained a static state in
response to users’ greetings, participants found it challenging
to understand the context of the interaction and sometimes
believed the robot was malfunctioning. This underlines the
need for discreet selection of a robot’s persona or additional
cues to inform users in addition to non-verbal behaviors
representing personas that consider the user expectations and
the interaction context.

b) Anthropomorphism: We noticed a tendency among
participants to anthropomorphize the robot’s actions as par-
ticipants crafted their own narratives and interpretations of the
robot’s behaviors within the presented scenarios. For instance,
one participant interpreted that the robot perceived the user’s
hand waving as a threat after observing defensive motions
from the robot. Additionally, two participants noted that the
robot with a playful character (Minion) seemed to exhibit bore-
dom when not greeted. We believe the users had an engaging
interaction by actively interpreting the robot’s behavior and
creating their own story in the show. This suggests that our
research offers insights into how anthropomorphism influences
user engagement and perception, highlighting the significant
role of user interpretation in designing interactive robots.

c) Limitations: Despite the proposed method’s capability
of mimicking characters or embodying personalities, our sys-
tem currently suffers from some limitations and shortcomings.
Most significantly, users reported a lack of diversity in robotic
behavior for interactions that lasted beyond a minute. The
proposed system does not offer a sufficient variety of actions
and observations. Furthermore, the limited number of states
available for each persona has resulted in users perceiving
the robot as engaging in repetitive behavior. This highlights a
significant drawback to our system which should be considered
in future iterations: added novelty and robotic behaviors for
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longer interactions will require a larger observation space to
detect more non-verbal cues, and a library of robot actions
that can be drawn by a more complex state machine within the
behavior selection engine. Ultimately, a state machine architec-
ture is not preferred as its complexity increases exponentially
with added states - a new method of selecting appropriate
behaviors would need to be implemented.

In addition, in group settings, we observed a delay in re-
sponding to the user’s actions; when multiple people attempted
to interact with the robot simultaneously, the robot could not
interact with all of the users simultaneously. We have seen
cases where users’ curiosity scores decreased as the robot
was still in states that responded to other participants. A more
complex turn-taking system [23] should be considered rather
than a single curiosity score for enhancing the interaction
quality. Finally, in character-based persona interaction, mo-
tions are not tailored to reflect the character, and there is a
difference in the appearance of the character and the robot
(e.g., AMBIDEX [14] is too big to look like Minion). These
two factors contributed to participants noticing a gap between
the intended character portrayal and the robot. Therefore, a
review of the method for stylizing movements and potential
design modifications should be taken into account.

VI. CONCLUSION

We have presented a system which we call MASK for
interacting with humans non-verbally based on personas that
can take on the likeness of personalities or film characters.
This system integrates several components (perception engine
with body pose estimation, behavior selection engine that
incorporates an LLM for behavior selection, and action library
with actions created through a motion retargeting pipeline) to
take steps towards generating autonomous, interactive robot
characters. As evidenced through user subject studies, we saw
that conditioning robotic behavior with a state, an observation,
and a persona can enable users to experience a convincing
persona in interactive agents. We observed that users could
recognize the intended character in both personality- and film-
character-based personas. Despite the technical limitations
of our system, such as lack of diversity in behavior and
delay of response in group setting scenarios, we have shown
preliminary steps towards bringing autonomous character-like
agents into the physical world. We anticipate that this work
will inspire future efforts toward expressive and convincing
persona-based robotic agents that provide captivating experi-
ences to people.
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Maja Matarić. Personality traits in large language models. arXiv preprint
arXiv:2307.00184, 2023.

[9] Yoon Kyung Lee, Yoonwon Jung, Gyuyi Kang, and Sowon Hahn.
Developing social robots with empathetic non-verbal cues using large
language models. arXiv preprint arXiv:2308.16529, 2023.

[10] Meriam Moujahid, David A Robb, Christian Dondrup, and Helen Hastie.
Come closer: The effects of robot personality on human proxemics
behaviours. In Proc. of the IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN), pages 2610–2616.
IEEE, 2023.

[11] Woo-Ri Ko, Minsu Jang, Jaeyeon Lee, and Jaehong Kim. Nonverbal so-
cial behavior generation for social robots using end-to-end learning. The
International Journal of Robotics Research, 0(0):02783649231207974,
0.

[12] Heike Brock, Selma Sabanovic, Keisuke Nakamura, and Randy Gomez.
Robust real-time hand gestural recognition for non-verbal communi-
cation with tabletop robot haru. In Proc. of the IEEE international
conference on robot and human interactive communication (RO-MAN),
pages 891–898. IEEE, 2020.

[13] Sungjoon Choi and Joohyung Kim. Towards a natural motion generator:
A pipeline to control a humanoid based on motion data. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4373–4380. IEEE, 2019.

[14] Keunjun Choi, Jaewoon Kwon, Taeyoon Lee, Changwoo Park, Jinwon
Pyo, Choongin Lee, SungPyo Lee, Inhyeok Kim, Sangok Seok, Yong-
Jae Kim, et al. A hybrid dynamic model for the ambidex tendon-driven
manipulator. Mechatronics, 69:102398, 2020.

[15] Robert R McCrae and Oliver P John. An introduction to the five-factor
model and its applications. Journal of personality, 60(2):175–215, 1992.

[16] Maarten Selfhout, William Burk, Susan Branje, Jaap Denissen, Marcel
Van Aken, and Wim Meeus. Emerging late adolescent friendship
networks and big five personality traits: A social network approach.
Journal of personality, 78(2):509–538, 2010.

[17] C. Dickens. A Christmas Carol. Bradbury and Evans, 1858.
[18] John Cohen Chris Meledandri and Janet Healy. Despicable Me.

Universal Pictures (via Illumination), 2010.
[19] L.F. Baum. The Wonderful Wizard of Oz. Oz Series. G.M. Hill Company,

1900.
[20] Robot Wise. Star Trek: The Motion Picture. Paramount Global, 1979.
[21] Antonio Andriella, Henrique Siqueira, Di Fu, Sven Magg, Pablo Barros,

Stefan Wermter, Carme Torras, and Guillem Alenya. Do i have a
personality? endowing care robots with context-dependent personality
traits. International Journal of Social Robotics, 13:2081–2102, 2021.

[22] William Tov, Ze Ling Nai, and Huey Woon Lee. Extraversion and agree-
ableness: Divergent routes to daily satisfaction with social relationships.
Journal of personality, 84(1):121–134, 2016.
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