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Abstract— We propose a novel framework COLLAGE for
generating collaborative agent-object-agent interactions by
leveraging large language models (LLMs) and hierarchical
motion-specific vector-quantized variational autoencoders (VQ-
VAEs). Our model addresses the lack of rich datasets in this
domain by incorporating the knowledge and reasoning abilities
of LLMs to guide a generative diffusion model. The hierarchical
VQ-VAE architecture captures different motion-specific char-
acteristics at multiple levels of abstraction, avoiding redundant
concepts and enabling efficient multi-resolution representation.
We introduce a diffusion model that operates in the latent space
and incorporates LLM-generated motion planning cues to guide
the denoising process, resulting in prompt-specific motion gen-
eration with greater control and diversity. Experimental results
on the CORE-4D, and InterHuman datasets demonstrate the
effectiveness of our approach in generating realistic and diverse
collaborative human-object-human interactions, outperforming
state-of-the-art methods. Our work opens up new possibilities
for modeling complex interactions in various domains, such as
robotics, graphics and computer vision.
Paper website: https://collagemotion.github.io/

I. INTRODUCTION

Modeling human-like agent-object interactions is funda-
mental in the vision community, enabling applications in
gaming, embodied AI, robotics, and VR/AR. While recent
works have explored single-person and multi-human object
interactions in non-collaborative settings [1]–[6], generat-
ing collaborative human-object-human interactions remains
largely unexplored. This task requires a complex understand-
ing of human actions and object interactions, as guiding indi-
vidual agents along with the task involves extensive planning.
Given the lack of rich datasets, training a generalized model
is challenging. To address this, we propose incorporating the
knowledge and reasoning abilities of large language models
(LLMs) to guide a generative diffusion latent diffusion model
for multi-human-object motion generation in collaborative
settings. In the remainder of this paper, we will use the
terms ‘human’ and ‘agent’ interchangeably, with the specific
application determining the appropriate usage. For robotics
applications, ‘agent’ may refer to either a real human or a
robotic, human-like entity such as a humanoid.

Pre-trained LLMs, such as GPT-4 [7] and Llama 2 [8],
have demonstrated emergent capabilities in reasoning, plan-
ning, and motion planning [9]–[12]. We hypothesize that
LLMs could provide a general and domain-independent
approach to modeling and planning interactive multi-human
object and human-object-human task collaboration, given
proper learning approaches. Learning to plan without a
dataset can help with motion planning in outdoor settings,
where currently, no dataset exists with extensive motion
capture data. Utilizing humanoid robots in such settings
is a significant hurdle, and effective use of planning via

Fig. 1: Text to collaborative motion and generalized mo-
tion generation by COLLAGE, based on user-provided text
prompts. In the top image, a simulated humanoid robot
adapts to the 3D terrain features based on the input text
from the human collaborator. In the bottom image, the two
human agents collaborate to handle an object using LLM-
based planning via our architecture.

LLMs for fine-grained motion generation could help with
humanoid-based motion and interaction in outdoor environ-
ments1 (Fig. 1). To capture the complex motion dynamics
in collaborative settings, we propose a hierarchical motion-
specific vector-quantized variational autoencoder (VQ-VAE)
architecture that explicitly captures different motion-specific
characteristics at different levels of abstraction, addressing
the limitations of previous VQ-VAE models [13]–[15]. We
incorporate a diffusion model [14], [16] for learning human
motion in the latent space and propose a novel architecture
to incorporate multi-human object interactions. We augment
textual planning cues from LLM with codebook-based asso-
ciations learned via VQ-VAE training, helping the diffusion
model better learn to model according to the task description,
given the complex interaction setting and associations. We
showcase how plans and cues generated by LLMs can be
utilized by the diffusion model for effective generation,
demonstrating faster speed and greater generational diversity

1Dataset from GDIS Terrain Segmentation Dataset (Havre de Grace,
MD), curated by DEVCOM Army Research Lab



compared to other models.
We evaluate our model’s generalizability on the human-

object-human CORE-4D dataset [17] and multi-human
dataset like InterGen [18], comparing our results with ex-
isting works in this setting.

The main contributions of our work are:

• We propose a novel approach for generating collabo-
rative human-object-human interactions by leveraging
LLMs and hierarchical motion-specific VQ-VAEs, ad-
dressing the lack of rich datasets in this domain.

• We introduce a hierarchical motion-specific VQ-VAE
architecture that captures different motion-specific char-
acteristics at different levels of abstraction, avoiding
redundant repeated concepts across layers and enabling
efficient multi-resolution representation.

• We demonstrate the effectiveness of utilizing LLM-
generated motion planning cues to guide the diffu-
sion model through the denoising process, resulting in
prompt-specific motion generation with greater control
and diversity.

• We evaluate our model on multiple datasets, showcas-
ing its generalizability and effectiveness in generating
collaborative human-object-human interactions.

II. RELATED WORK

Text-Conditioned Human Motion Generation. Generating
human motions based on textual descriptions has been a
recent research focus. Early approaches generated motions
based on action categories [19]–[22], past motions [23]–
[27], trajectories [28]–[32], and scene context [33]–[42].
Recent works have enabled direct generation of human
motions from textual inputs [14], [43]–[63], extending to
multi-person [64]–[66] and human-scene interactions [38],
[67], [68]. However, generating collaborative human-object-
human interactions remains largely unexplored.
Human-Object Interaction Generation. Modeling real-
istic human-object interactions is challenging due to the
complexity of capturing both human motions and object
dynamics. Prior research has addressed hand-object interac-
tions [69]–[73], single-frame human-object interactions [74]–
[79], and zero-shot settings [80]–[82]. Recent studies have
explored whole-body dynamic interaction generation through
kinematic-based [4], [83]–[94] and physics-based meth-
ods [95]–[105], but often suffer from limitations such as a
narrow scope of actions, static objects, or lack of compre-
hensive whole-body motion representation.
Collaborative Multi-Human Interaction Modeling. Col-
laborative human-object-human interactions remain largely
unexplored, despite the study of multi-human interactions in
non-collaborative contexts [6]. The complexity arises from
modeling intricate coordination between multiple humans
and objects, requiring advanced planning and understanding
of collective actions. Recent datasets and baselines, such as
CORE-4D [17], have begun to address this gap, but further
research is needed to develop models capable of handling
such complex interactions.
Utilizing LLMs in Motion Generation. Large language
models (LLMs) have demonstrated remarkable abilities in
reasoning [9], planning [10], and task execution [11]. In the
realm of digital humans, LLMs have been employed to guide

motion generation [48], [106]–[109]. Our approach extends
this line of work by utilizing LLMs to guide the generation
of collaborative human-object-human interactions.
Hierarchical VQ-VAE and Diffusion Models in Mo-
tion Generation. Vector-Quantized Variational Autoen-
coders (VQ-VAEs) have been used to create quantized
motion latent spaces [13], [14], [108], but struggle with
complex, diverse motion generation due to limitations like
small codebooks, as increasing the codebook size for com-
plex datasets causes codebook collapse, as we observed
while generalizing [14] to multi-human settings; smaller
codebooks even in single-human settings result in less di-
verse motion.Hierarchical architectures [15] and diffusion
models [14], [16] have shown promise in modeling complex
human motion. Extending these ideas, our approach incor-
porates a hierarchical motion-specific VQ-VAE architecture
and a diffusion model guided by LLM-generated plans to
effectively generate collaborative human-object-human inter-
actions.

III. METHODOLOGY

A. Hierarchical VQ-VAE with Description Cues

Modeling complex human-object interactions necessitates
capturing motion dynamics at multiple levels of abstraction,
from high-level trajectories and interaction types to low-
level limb movements and object manipulations. To achieve
this, we propose a hierarchical Vector Quantized Variational
Autoencoder (VQ-VAE) that incorporates description cues
provided by a Language Model (LLM) at each level of
abstraction. This architecture enables the model to learn dis-
entangled motion representations corresponding to different
semantic concepts guided by hierarchical textual cues.

Our hierarchical VQ-VAE architecture captures motion
dynamics at multiple levels of abstraction, as shown in
2. The encoders at each level map the inputs to latent
representations, which are then quantized using codebooks.
The decoders reconstruct the original data from the quantized
latent representations. At each level l, the encoder for human
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Fig. 2: Overview of the proposed COLLAGE framework for collaborative human-object interaction generation. The hierarchical VQ-VAE
encoder captures motion-specific characteristics at different levels of abstraction. The latent diffusion model operates in the learned latent
space and incorporates LLM-generated motion planning cues to guide the denoising process, enabling the generation of prompt-specific
interactions with enhanced control and diversity as in Fig 1.
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decoder reconstructs the inputs from the quantized latent
representations, proceeding hierarchically. For human i, the

decoder function is X̂i = DH
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DH is a neural network with parameters φH . Similarly,
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. It is worth noting

that our approach differs from other models like Priority-
based VQ-VAE [14] and T2M-GPT [13] in terms of the
latent representation used by the decoder. In our model, we
aggregate the latent codes from all layers of the VQ-VAE
before passing them to the decoder. This allows our decoder
to work with non-discrete, continuous representations. As
a result, our model can directly utilize the continuous rep-
resentations generated by the diffusion model without the
need for discrete mapping. In contrast, models like Priority-
based VQ-VAE and T2M-GPT learn distributions over dis-
crete latent codes, requiring an additional step to map the
continuous diffusion outputs to discrete codes. Our training
objective combines several loss terms, including reconstruc-
tion loss, commitment loss, codebook loss, alignment loss,
hierarchical disentanglement loss, velocity smoothing loss,
penetration loss, and contact loss. The reconstruction loss
measures the discrepancy between inputs and reconstruc-
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∣∣∣
2

2
. The commit-

ment and codebook losses encourage alignment between
encoder outputs and codebook embeddings:

L(l)
commit =

n∑
i=1
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where sg(·) denotes the stop-gradient operator. The alignment loss
with description cues ensures latent representations align with se-
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where Cov(·) denotes covariance, and | · |F is the Frobenius norm.
The penetration loss penalizes interpenetration between humans
and objects, Lpenetration =

∑n
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d(·, ·) computes the signed distance between human and object
meshes. The contact loss encourages plausible human-object con-
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t , Ŷt)− C(Xi

t , Yt)
∣∣∣
2

2
, where

C(·, ·) computes the contact map between human and object
meshes. The velocity smoothing loss encourages smooth motion
transitions:
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The overall objective is:
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with weighting coefficients λ. The hierarchical architecture enables
the model to capture motion dynamics at multiple levels of ab-
straction, as described in Figure 1. The LLM provides hierarchical
description cues for each level’s abstraction, guiding the model to
associate latent representations with appropriate semantic concepts.
Attention mechanisms across entities capture dependencies and
interactions essential for understanding coordinated actions. The
hierarchical disentanglement loss encourages different levels to
focus on different features, preventing redundancy and promot-
ing specialization, leading to more meaningful and interpretable
representations. Codebooks are updated using exponential moving
averages, and the straight-through estimator is employed to allow
gradients to flow through quantization operations. Our hierarchical
VQ-VAE with description cues effectively captures the multi-
scale nature of human-object interactions, learning disentangled
representations at different abstraction levels and aligning them with
hierarchical semantic cues to enhance interpretability and facilitate
advanced control in the motion latent space.

B. Latent Diffusion with LLM Guidance
Our goal is to generate realistic motion involving multiple

humans and objects, guided by hierarchical planning cues from
a Large Language Model (LLM). We propose to utilise a de-
noising diffusion probabilistic model [110], [111] operating on
hierarchical latents learned by a VQ-VAE (Fig. 2). The model
integrates reasoning cues at multiple diffusion stages, generating
motions aligned with semantic intent from the LLM. Given a dataset
D = {(Xi, ei)}Ni=1, where each motion sequence Xi consists of



the trajectories of n humans H = H1, . . . , Hn and m objects

O = O1, . . . , Om over K time steps, and ei = [e
(1)
i , . . . , e

(L)
i ]

are the LLM-provided planning cues at L reasoning steps, our
diffusion model learns to generate motion sequences conditioned
on these cues. To enhance the integration of planning cues EL =
[e1, . . . , eL] into the diffusion model, we associate each cue el

with relevant latent codes from the VQ-VAE codebook C(l) at level
l. After training the VQ-VAE, we compute associations between
latent codes c ∈ C(l) and planning cues el by learning embedding

functions φ
(l)
c (c) and φ

(l)
e (el) that map codes and cues into a shared

semantic space. We optimize a contrastive loss to ensure associated
pairs are close in the embedding space:
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where τ is a temperature parameter. For each planning cue
el, we select the top u latent codes {cl,1, . . . , cl,u} most as-
sociated with el based on cosine similarity. We augment the
cue by concatenating the embeddings of these codes, ẽl =[
φ
(l)
e (el); φ

(l)
c (cl,1); . . . ; φ

(l)
c (cl,u)

]
.

These augmented cues ẼL = [ẽ1, . . . , ẽL] are used in the de-
noising network, enhancing the model’s capacity to generate motion
sequences aligned with the planning cues by incorporating both
semantic and structural information. This method leverages learned
associations between planning cues and latent codes, improving the
diffusion model’s performance during the denoising process.

To prepare the input for the diffusion model, we aggregate the
hierarchical latent codes from the VQ-VAE to form the initial
latent representation x0. This is achieved by summing the latent

codes across all levels, x0 =
∑L

l=1

[
z
(l)
H , z

(l)
O

]
∈ R

F×V ×K ,

where z
(l)
H ∈ R

F×n×K are the latent codes for humans at level l,

z
(l)
O ∈ R

F×m×K are object latent codes, F is the feature dimension,
V = n+m is the total number of nodes, and K is the number of
time steps. This gives us a fully connected graph G = (V).

Our denoising network extends the U-Net architecture to han-
dle spatio-temporal graph data. It incorporates downsampling and
upsampling paths with residual connections, allowing the network
to capture multi-scale temporal dependencies. We develop Motion
Modeling Blocks (MM-Blocks) to process the data at different
resolutions, effectively modeling the complex dynamics of motion
sequences. Like previous diffusion-based models [111], we use
positional encodings of the diffusion step t ∈ 1, . . . , T and process
it using a transformer positional embedding. This embedding,
denoted as pt, is added between the temporal layers in each MM-
Block, allowing the network to condition on the noise level and
adapt its denoising strategy accordingly.

In the encoding path (downsampling), at each MM-Block i,
we first apply Temporal Convolutional Networks (TCNs) [112]
to capture temporal dependencies at multiple scales. The TCN at
layer i is defined as, Hi = TCN(Hi−1) + pt, where Hi−1 ∈
R

Ci−1×V ×Ki−1 is the input from the previous layer, Ci−1 is the
feature dimension, Ki−1 is the temporal length at layer i − 1,
and pt ∈ R

Ci−1×1×1 is the positional embedding of the diffusion
step t, broadcasted to match the dimensions. Adding the positional
embedding allows the network to be aware of the current noise
level, which is crucial for effective denoising, as observed by
[111]. Next, we apply Graph Attention Networks (GATs) [113] to
model spatial dependencies, Hi = GAT(Hi,A), where A is the
adjacency matrix denoting fully connected graph. The GAT allows
the network to focus on important interactions between humans and
objects by computing attention weights for the edges in the graph.

To incorporate the reasoning cues ẼL = [ẽ1, . . . , ẽL], we
perform cross-attention between the node features Hi and the
reasoning cues at each MM-Block, Hl

i = CrossAttn(Hi, γl(t) ·
ẼL), for each l ∈ 1, . . . , L, where γl(t) is a time-dependent
modulation function. The time-dependent modulation function γl(t)
dynamically adjusts the influence of each reasoning cue ẽL over

the diffusion steps t, emphasizing high-level planning cues at early
steps and fine-grained details later. Specifically, for reasoning cue
level l, we define γl(t) = λl exp(−klt/T ) for high-level cues
(l small), where λl is a scaling factor, kl controls the rate of
decay, and T is the total number of diffusion steps. This function
decreases over time, giving high-level cues more influence when
the data is noisy. For low-level cues(l large), we use γl(t) =
λl[1 − exp(−klt/T )], which increases over time, allowing fine-
grained details to impact later steps when refining the motion.
The rate of decay kl can be a learnable parameter, enabling the
model to adaptively determine the optimal influence schedule for
each cue level. This modulation ensures the network focuses on
appropriate aspects of the reasoning cues at each stage, effectively
aligning the generated motion sequences with the LLM provided
hierarchical plan. We then again pass the output through TCN and
GAT layers. Finally, the outputs {Hl

i}Ll=1 are concatenated with Hi

and passed to the next layer, ensuring that the semantic guidance is
integrated throughout the network. We then perform downsampling
to reduce the temporal dimension, Hi = Downsample(Hi), which
enables the network to capture long-range temporal dependencies.
We repeat modelling spatial and temporal motion dynamics in
alternate fashion, with downsampling steps.

In the decoding path (upsampling), we mirror the operations
of the encoding path. Finally, we project the features back to the
original latent space dimension to obtain the predicted noise:

ε̂ = Linear(H0) ∈ R
F×V ×K . (1)

The forward diffusion process [110], [111], [114] grad-
ually adds Gaussian noise to the data, q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI), where βt

T
t=1 is a predefined noise

schedule. The reverse diffusion process aims to recover the original
data from the noisy observations. The denoising network learns to
predict the added noise ε at each diffusion step t, conditioned on
the current noisy data xt, the graph structure G, and the reasoning
cues EL. The training objective is to minimize the expected L2
loss between the true noise ε and the predicted noise:

Lsimple = Ex0, ε, t
[|ε− εθ(xt, t,G,EL)|2

]
, (2)

where xt =
√
ᾱtx0 +

√
1− ᾱt ε, with ε ∼ N (0, I), and ᾱt =∏

s = 1t(1− βs). By minimizing this loss, the network learns to
denoise the data effectively. Incorporating the reasoning cues EL

during diffusion allows the network to generate motion sequences
that fulfill the intended actions and interactions. The time-dependent
modulation function γl(t) can be designed to emphasize high-level
planning cues at early diffusion steps and fine-grained details at
later steps, enabling the network to focus on different aspects of
the reasoning at appropriate times.

During inference, we sample Gaussian noise xT ∼ N (0, I)
conditioned on (G,EL) and iteratively denoise using the DDIM
update [115]. Our U-shaped denoising network, augmented with
Motion Modeling Blocks (MM-Blocks) and hierarchical condition-
ing, synthesizes motion sequences guided by planning cues derived
from the LLM. The architecture leverages multi-scale temporal
modeling to capture complex motion dynamics and employs Graph
Attention Networks (GATs) to explicitly encode spatial interactions
between humans and objects. Through dynamic modulation of
cross-attention with hierarchical reasoning cues across diffusion
steps, the proposed approach generates semantically coherent and
physically plausible motions closely aligned with the hierarchical
planning from the LLM.

IV. EXPERIMENTATION AND RESULTS

a) Implementation Details: Our model consists of a
hierarchical VQ-VAE with L = 6 levels, each with a codebook
size of 512× 512 (latent dimension 512) and two Conv1D blocks
per level per entity (kernel size 3, residual connections), similar to
T2M-GPT [13]. Vector quantization is performed using the straight-
through estimator, and hierarchical planning cues are generated via
GPT-4 [7] and embedded using CLIP ViT-B/32 [119], associated



Methods(CORE-4D)
R Precision↑

FID↓ MM Dist↓ Diversity→ MModality↑ Methods(InterHuman)
R Precision↑

FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3 Top 1 Top 2 Top 3

Real 0.312±0.007 0.587±0.006 0.673±0.006 0.005±0.0005 4.124±0.019 8.151±0.091 - Real 0.452±0.008 0.610±0.009 0.701±0.008 0.273±0.007 3.755±0.008 7.948±0.064 -

TEMOS [45] 0.065±0.006 0.179±0.006 0.211±0.005 9.214±0.0758 8.536±0.019 4.671±0.091 0.510±0.052 TEMOS [45] 0.224±0.010 0.316±0.013 0.450±0.018 17.375±0.043 6.342±0.015 6.939±0.071 0.535±0.014

T2M [116] 0.195±0.003 0.141±0.003 0.267±0.002 11.258±0.0694 5.867±0.013 2.738±0.078 1.672±0.041 T2M [116] 0.238±0.012 0.325±0.012 0.464±0.014 13.769±0.072 5.731±0.018 7.046±0.022 1.387±0.076

MDM [117] 0.163±0.013 0.257±0.010 0.348±0.008 9.671±0.0629 10.219±0.020 7.395±0.090 3.526±0.074 MDM [117] 0.153±0.009 0.260±0.011 0.339±0.012 9.167±0.056 7.125±0.018 7.602±0.045 2.355±0.080

MDM(GRU) [117] 0.168±0.009 0.279±0.008 0.361±0.010 9.587±0.1382 10.228±0.025 6.951±0.151 3.170±0.046 MDM(GRU) [117] 0.179±0.006 0.299±0.005 0.387±0.007 32.617±0.1221 9.557±0.019 7.003±0.134 3.430±0.035

ComMDM [118] 0.187±0.005 0.256±0.007 0.301±0.007 9.217±0.0727 7.541±0.023 5.367±0.080 0.721±0.065 ComMDM [118] 0.223±0.010 0.334±0.008 0.466±0.012 7.069±0.054 6.212±0.021 7.244±0.038 1.822±0.052

InterGen [18] 0.206±0.007 0.312±0.008 0.401±0.008 7.217±0.2321 10.251±0.017 6.162±0.225 3.402±0.063 InterGen [18] 0.371±0.010 0.515±0.012 0.624±0.010 5.918±0.079 5.108±0.014 7.387±0.029 2.141±0.063

COLLAGE 0.229±0.008 0.332±0.009 0.435±0.009 6.890±0.2198 5.526±0.016 7.373±0.237 3.589±0.066 COLLAGE 0.383±0.005 0.547±0.006 0.657±0.006 4.987±0.2061 4.992±0.012 7.515±0.214 2.872±0.057

w/o Hierarchy 0.201±0.007 0.309±0.008 0.411±0.008 7.452±0.2381 5.582±0.018 6.995±0.224 3.209±0.058 w/o Hierarchy 0.355±0.009 0.521±0.010 0.632±0.009 5.543±0.2154 5.048±0.015 7.137±0.201 2.492±0.061

w/o LLM 0.208±0.007 0.315±0.008 0.419±0.008 7.235±0.2305 5.561±0.017 6.549±0.230 3.152±0.063 w/o LLM 0.362±0.008 0.528±0.009 0.639±0.008 5.326±0.2087 5.027±0.014 6.691±0.207 2.435±0.059

w/o Time Modulation 0.218±0.008 0.317±0.009 0.420±0.009 7.071±0.2251 5.556±0.017 7.263±0.234 3.474±0.065 w/o Time Modulation 0.372±0.007 0.536±0.008 0.647±0.007 5.162±0.2129 5.021±0.013 7.405±0.211 2.767±0.062

TABLE I: Experimental results and Ablation studies for text-conditioned interaction generation on the CORE-4D and InterHuman datasets,
where ± indicates 95% confidence interval and → means the closer the better. Bold indicates best results.

Test Set Method RR.Je (mm, ↓) RR.Ve (mm, ↓) Cacc (%, ↑) FID (↓)

S1
MDM [117] 138.0 (± 0.3) 194.6 (± 0.2) 76.9 (± 0.5) 7.7 (± 0.2)

OMOMO [17] 137.8 (± 0.2) 196.7 (± 0.3) 78.2 (± 0.5) 8.3 (± 0.6)
COLLAGE 131.2 (± 0.2) 185.1 (± 0.2) 80.5 (± 0.4) 7.2 (± 0.2)

S2
MDM [117] 145.9 (± 0.2) 208.2 (± 0.2) 76.7 (± 0.1) 7.7 (± 0.2)

OMOMO [17] 145.2 (± 0.6) 209.9 (± 1.0) 77.8 (± 0.3) 8.3 (± 1.0)
COLLAGE 138.5 (± 0.5) 198.7 (± 0.8) 79.9 (± 0.2) 7.3 (± 0.8)

TABLE II: Quantitative results on object-conditioned interaction
synthesis on CORE-4D.

with the VQ-VAE codebooks through contrastive learning (tem-
perature τ = 0.07, top u = 8 latent codes per level). The latent
diffusion model is based on a U-Net architecture with M = 4 Mo-
tion Modeling Blocks (MM-Blocks), each consisting of Temporal
Convolutional Networks (TCNs) with kernel sizes {3, 5, 7} [112]
and Graph Attention Networks (GATs) with 8 attention heads [113],
capturing spatio-temporal dependencies.For training, we use the
Adam optimizer for VQ-VAE with a learning rate of 1 × 10−4

and AdamW [120] for the diffusion model with a learning rate
of 2 × 10−4, both with cosine annealing, gradient clipping (max
norm 1.0), and weight decay of 1× 10−5. For CORE-4D [17], we
train for 50K iterations with a learning rate of 2 × 10−4 and an
additional 30K iterations with a reduced learning rate of 1× 10−5.
For InterHuman [18], we train for 200K iterations at 2× 10−4 and
100K iterations at 1 × 10−5. We use a batch size of 256 for both
datasets and apply the Adam optimizer with [β1, β2] = [0.9, 0.99]
and an exponential moving constant λ = 0.99. Loss terms include

λrecon = 1.0, λ
(l)
commit = 0.25 per level, λ

(l)
codebook = 0.25 per level,

λ
(l)
align = 0.5 per level, λsmooth = 0.1 [48], λpenetration = 10.0

[69], and λcontact = 5.0. The hierarchical disentanglement loss is
weighted by λdisent = 1.0. The diffusion model uses 1000 diffusion
steps and we test for 5, 15, 55, 100 DDIM [121] sampling steps
during inference. The hierarchical cue modulation function applies
exponential decay for high-level cues and increasing influence for
low-level cues across diffusion steps

We train COLLAGE on the CORE-4D dataset [17], which
contains 998 motion sequences of human-object-human interactions
spanning 5 object categories. We annotates the motion sequences
with textual descriptions, the annotated text-motion dataset has
an average length of 8.54 words, totaling 8,542 words. We split
the dataset into training, validation, and test sets with a ratio of
0.8, 0.05, and 0.15, respectively. We also evaluate our model on
the InterHuman dataset [18] for multi-human generation, which
includes 6,022 motions with 16,756 unique descriptions. We use
same train/test formulation as [18]. We additionally also train our
model for single human motion generation on KIT-ML [122] and
HumanML3D [123] Dataset, the visualisations and comparisons are
available on the paper website.

b) Evaluation Metrics: For text-conditioned generation
on CORE-4D and InterHuman, we adopt the metrics from Inter-
Gen [18]: (1) FID, (2) R-Precision, (3) Diversity, (4) Multimodality
(MModality), and (5) MM Dist. For additional tasks on CORE-4D,
we follow their own metrics [17]: (1) RR.Je, (2) RR.Ve, and (3)
Cacc. All evaluations are run 20 times (except MModality, 5 times)
with average results reported with a 95% confidence interval. For
detailed descriptions of these metrics, we refer readers to [17], [18].

c) Baselines: For text-conditioned generation on the
CORE-4D dataset, we compare COLLAGE against state-of-the-
art methods, including TEMOS [45], T2M [116], MDM [117],
MDM-GRU [117], ComMDM [118], and InterGen [18]. We modify

these models to handle two-person interactions and train them on
the CORE-4D dataset. For the additional tasks on the CORE-
4D dataset, we compare against MDM [117], a one-stage motion
diffusion model, and OMOMO [17], a two-stage approach for
object-conditioned human motion generation.

A. Results
1) Text-Conditioned Generation:

a) Results on CORE-4D: Table I (left) presents the results
of text-conditioned generation on the CORE-4D dataset. COLLAGE
outperforms all baselines across most metrics, achieving the highest
R-Precision scores, lowest FID, and best diversity. The hierarchical
VQ-VAE effectively captures multi-scale motion dynamics, while
the LLM-guided diffusion model generates motions that align well
with the textual descriptions. The incorporation of hierarchical
planning cues enables COLLAGE to generate more coherent and
diverse interactions compared to the baselines.

b) Results on InterHuman: We further evaluate COL-
LAGE on the InterHuman dataset for multi-human generation.
Table I (right) shows the comparison with state-of-the-art methods.
COLLAGE achieves superior performance across nearly all metrics,
demonstrating its effectiveness in generating diverse and realistic
multi-human interactions. The hierarchical modeling of motion
dynamics and the incorporation of LLM-guided planning enable
COLLAGE to better capture the complexities of human-human
interactions compared to the baselines.

2) Object-Conditioned Generation on CORE-4D: We eval-
uate COLLAGE on the task of object-conditioned human motion
generation on the CORE-4D dataset. Given an object geome-
try sequence, the goal is to generate two-person collaboration
motions using the SMPL-X model [124]. Table II presents the
quantitative results, comparing COLLAGE with MDM [117] and
OMOMO [17]. COLLAGE achieves the lowest joint and vertex
position errors, highest contact accuracy , and best motion quality
(FID) on both test sets (S1 and S2). The hierarchical modeling and
LLM guidance enable COLLAGE to generate more precise and
realistic human-object interactions compared to the baselines.

3) Ablation Studies: We conduct ablations on the CORE-4D
dataset to validate the effectiveness of the proposed components in
COLLAGE. Table I (bottom) presents the results. Removing the
hierarchical structure in the VQ-VAE (w/o Hierarchy) significantly
drops performance across metrics, highlighting the importance of
modeling motion dynamics at multiple scales. Removing LLM
guidance (w/o LLM) also decreases performance, demonstrat-
ing the effectiveness of incorporating hierarchical planning cues.
Replacing time-dependent modulation with fixed weighting (w/o
Time Modulation) degrades performance, indicating the benefit of
adaptively adjusting the influence of planning cues over diffusion
steps. These studies confirm that hierarchical VQ-VAE, LLM guid-
ance, and time-dependent modulation are essential components of
COLLAGE, contributing to its superior performance in generating
collaborative human-object-human interactions.

a) Impact of Hierarchical Levels and Codebook Size:
We evaluate COLLAGE’s performance with different numbers of
hierarchical levels and codebook sizes in the VQ-VAE architecture.
Figure 3 shows the R-Precision (top-1) scores on the CORE-4D
dataset as we vary the number of levels from 1 to 8 and the



Fig. 3: Ablation Studies
codebook sizes from 128 to 1024. Increasing the number of levels
initially improves performance, with the best results achieved at
6 levels for all codebook sizes, indicating that the hierarchical
structure effectively captures motion dynamics at multiple scales.
However, further increasing levels beyond 6 slightly degrades per-
formance, likely due to overfitting and increased model complexity.
We find that codebook sizes of 256 and 512 strike a good balance
between expressiveness and efficiency, with 512 yielding the best
overall performance across different levels.

b) Effect of Planning Cues and Top Latent Codes:
We analyze the effect of LLM-guided planning cues and the
number of top latent codes on diffusion speed, i.e., the number of
steps required to generate high-quality motions. Figure 3 compares
the R-Precision (top-1) scores of COLLAGE with and without
planning cues at different diffusion steps and the impact of using
different numbers of top latent codes. Incorporating planning cues
significantly accelerates the diffusion process, allowing the model to
generate high-quality motions in fewer steps. Increasing the number
of top latent codes further improves performance, with diminishing
returns beyond 7-8 codes, demonstrating the effectiveness of cues
and top latent codes in guiding the denoising process and highlight-
ing the efficiency gains achieved by our approach.

c) Impact of Hierarchical Structure and Codebook Size
on Latent Disentanglement: Our ablation study investigates the
influence of the hierarchical structure and codebook size on the
disentanglement of latent representations in our VQ-VAE model.
Figure 3 reveals that increasing the number of levels consistently
improves disentanglement, as evidenced by higher MIG [125]
scores, suggesting that the hierarchical structure effectively captures
disentangled representations at different levels of abstraction, with
higher levels focusing on more abstract patterns. Similarly, larger
codebook sizes lead to better disentanglement for a given number of
levels, indicating that a larger codebook enables more expressive
and disentangled representations. However, the diminishing gaps
between the lines at higher levels and codebook sizes imply that
the benefits of increasing these hyperparameters saturate beyond
certain thresholds, highlighting the importance of balancing model
complexity and computational efficiency when designing hierarchi-
cal VQ-VAE architectures for learning disentangled representations
of human motion data. These ablation studies provide insights into
the functioning and effectiveness of COLLAGE. The evaluation
of different hierarchical levels and codebook sizes highlights the
importance of finding the optimal balance between model complex-
ity and expressiveness. The latent space disentanglement analysis
demonstrates the hierarchical VQ-VAE’s ability to capture distinct
and independent features at different levels of abstraction. The
analysis of diffusion speed showcases the efficiency gains achieved
by incorporating planning cues and utilizing top latent codes,
enabling faster generation of high-quality motions.

B. Qualitative Analysis
Attached video presents qualitative examples of generated col-

laborative human-object-human interactions by COLLAGE and the
baselines on the CORE-4D dataset. COLLAGE generates more
realistic and coherent interactions compared to the baselines, accu-
rately capturing the coordination between the two humans and their
interactions with the object. The generated motions align well with
the input text descriptions, demonstrating the effectiveness of the
LLM-guided planning cues in controlling the generation process. In
contrast, the baselines struggle to generate precise and coordinated
interactions, often resulting in unrealistic or inconsistent motions.

a) Runtime Analysis: We compare the inference time of
COLLAGE with the baselines on the CORE-4D dataset. Table 3
presents the average relative inference time per sample for each
method with respect to the MDM [117] runtime. COLLAGE
achieves significantly faster inference. Furthermore, we tested our
performance for different DDIM sampling steps (5, 15, 55, and
100 in the main model). As expected, with an increase in the
number of steps, the generation quality improves. However, the
improvement in generation quality from 55 to 100 steps is minor,
while the generation time nearly doubles. Notably, we observe that
with just 15 steps, we achieve relatively better generation quality
than InterGen [18], and our model with 15 steps is faster than the
MDM model (15 DDIM steps) by 65%. Additionally, our near-
best performance (55 DDIM steps) has a runtime similar to MDM.
Thus, our hierarchical VQ-VAE enables efficient compression and
decompression, while the LLM-guided cues and codebook associ-
ations provide curated motion priors, allowing the diffusion model
to denoise in fewer steps and generate smoother motion faster.
In contrast, other baselines require longer inference times due to
their complex architectures and the need to generate motions in the
original high-dimensional space.

V. DISCUSSION AND LIMITATIONS

The experimental results demonstrate the effectiveness of COL-
LAGE in generating realistic and diverse collaborative human-
object-human interactions. The hierarchical VQ-VAE architecture
captures motion dynamics at multiple scales, while the LLM-guided
diffusion model generates motions aligned with textual descrip-
tions and planning cues. Incorporating hierarchical planning cues
from the LLM enables more coherent and controllable generation,
evidenced by COLLAGE’s superior performance across various
metrics and datasets. However, there are some limitations to our
approach. First, COLLAGE does not explicitly model physical
interactions between humans and objects, relying on learned mo-
tion priors to generate plausible interactions. Incorporating explicit
physics modeling could further improve the realism and consistency
of generated motions. Second, the current approach generates
motions from scratch based on input text and object geometry
but does not allow fine-grained editing or control over specific
motion aspects. Extending the model to support motion editing
and user-guided refinement could enhance its practical utility.
Despite these limitations, COLLAGE represents a significant step
towards generating realistic and diverse collaborative human-object-
human interactions. Our approach can be seamlessly extended to
collaborative interactions between humanoid robots and objects. By
training our model on humanoid robot motion data, we can generate
realistic and diverse interactions that mimic human-like behaviors.
This extension has significant implications for deploying humanoid
robots in various real-world scenarios, where they are expected to
collaborate with objects and other agents in a human-like manner.
The proposed approach opens new possibilities for applications in
robotics, virtual reality, and computer graphics, where generating
plausible and coordinated multi-agent interactions is crucial. Future
work could explore incorporating explicit physics modeling, sup-
porting motion editing and user control, and extending the approach
to handle a larger variety of objects and interaction scenarios.
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