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Abstract— In an era where robots become available to
the general public, the applicability of assistive robotics ex-
tends across numerous aspects of daily life, including in-
home robotics. This work presents a novel approach for
such systems, leveraging long-horizon action anticipation from
short-observation contexts. In an assistive cooking task, we
demonstrate that predicting human intention leads to effective
collaboration between humans and robots. Compared to prior
approaches, our method halves the required observation time
of human behavior before accurate future predictions can be
made, thus, allowing for quick and effective task support
from short contexts. To provide sufficient context in such
scenarios, our proposed method analyzes the human user and
their interaction with surrounding scene objects by imbuing
the system with additional domain knowledge, encoding the
scene object’s affordances. We integrate this knowledge into a
transformer-based action anticipation architecture, which alters
the attention mechanism between different visual features by
either boosting or attenuating the attention between them.
Through this approach, we achieve an up to 9% improvement on
two common action anticipation benchmarks, namely 50Salads
and Breakfast. After predicting a sequence of future actions,
our system selects an appropriate assistive action that is subse-
quently executed on a robot for a joint salad preparation task
between a human and a robot. Videos and dataset available on
the website: https://sarthak268.github.io/NeSCA/.

I. INTRODUCTION

Action anticipation is a crucial step in the development
of intelligent agents [1] for the task of human-robot col-
laboration (HRC). For example, accurately anticipating a
human’s future action allows a robot to assist them in their
task proactively without needing to be instructed at every
step, reducing the cognitive load on human operators, thus,
allowing them to focus more on their work [2]. Prior work
in action anticipation has mainly focused on short-term or
next-action anticipation [3], [4], [5], [6], [7], [8], [9], [10];
however, to enable proactive agent behavior, multiple future
actions must be predicted for long horizons as the immediate
next action may not always be the most appropriate assistive
action. For example, taking over a task that the human
is already doing or about to start may interfere with the
user’s immediate actions, necessitating the prediction of
multiple future actions. Selecting one of multiple future
actions depends on various factors, including if such a
task can be executed in parallel by the robot and if its
likelihood of occurring is sufficiently high given the current
observation. In an assistive task, predicting action sequences
requires a quick understanding of the user’s current behav-
ior, necessitating making decisions given short observation
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Fig. 1: NeSCA: Given a short video segment (blue), our
system anticipates future actions and their respective con-
fidences (color gradients) utilizing our proposed neuro-
symbolic attention approach to re-focus attention between
visual features. Finally, if sufficiently confident about the
prediction, a robot executes assistive actions (green).

contexts of task-relevant behavior. However, making accurate
predictions of future actions given only a short horizon of
relevant observations is challenging due to its inherent lack of
context. To this end, we propose NeSCA, Neuro-Symbolic
Short-Context Action Anticipation, which imbues a neural
action anticipation pipeline with additional symbolic domain
knowledge in the form of a Knowledge Graph (KG). NeSCA
utilizes domain knowledge to connect scene objects to their
relevant affordances [11], [12] through a structured prior.
For example, with the knowledge that a tomato has the
affordance being cuttable and knowing about the presence
of a knife that can be used for cutting, NeSCA can boost the
attention between these concepts to increase the likelihood
of the human’s intent of cutting tomatoes in the future
while simultaneously attenuating the attention between other
unrelated features (see Fig. 1). Imbuing a neural network that
can effectively comprehend complex inputs like videos with
symbolic knowledge can greatly enhance the performance of
downstream tasks [13], i.e., subsequent action anticipation
and user assistance. Empirically, we find that utilizing the
knowledge graph that connects objects to their affordances
reduces the required task-relevant observation by ≈ 50%
when predicting future actions as compared to current state-
of-the-art baselines.

To process high-dimensional inputs like videos, trans-

https://sarthak268.github.io/NeSCA/


formers [14] have proven to be efficient at comprehend-
ing sequential data and lend themselves well to action
anticipation from videos [15], but remain largely black-
box end-to-end approaches. On the other hand, structured
domain knowledge remains interpretable and has previously
been investigated in the image domain [16], demonstrating
improved performance for image classification [13]. In this
work, we seek to integrate neural video comprehension
with external symbolic domain knowledge pertaining to
the objects in the scene, linking them to their respective
affordances. Given a previously unseen video sequence, we
extract the relevant scene objects via a neural object detector
and employ graph search through our KG to assign relevant
affordances to them. To achieve the integration of the video
understanding and extracted domain knowledge, we propose
to imbue the attention mechanism of the transformer with
an addition rectification matrix that influences how queries
and keys interact with each other. Intuitively speaking, the
learned knowledge-conditioned rectification matrix boosts or
attenuates the attention between various video features, thus,
aiding the prediction of future actions. A particular benefit
of this approach is that our proposed method significantly
improves performance when only short-horizon contexts are
given – a key aspect for effective human-robot collaboration
that prior works in action anticipation [17], [18], [19], [7],
[20], [15] only addressed to a limited extent. Before utilizing
our action anticipation approach for human-robot collabora-
tion, we demonstrate its efficacy on two common long-term
action-anticipation benchmarks, namely the 50Salads [21]
and Breakfast [22] datasets, and show superior performance
as compared to current state-of-the-art methods.

Having demonstrated the efficacy of NeSCA, we showcase
a joint salad creation task in a real-world tabletop scenario
that leverages the sequence of predicted future human ac-
tions. Given a set of predicted actions, the system selects
an appropriate action for the robot to execute while the
user keeps working on their current task given a set of
selection criteria (see Figure 1). Among others, these criteria
mainly include checking whether the anticipated action’s pre-
conditions are already satisfied and if the action is predicted
with sufficient confidence. When such an action is identified,
the robot executes the action to support the user. With our
approach, we achieve a 50.1% accuracy in selecting and
executing an appropriate assistive action while also reducing
the required length of context to half compared to the current
state-of-the-art to achieve a similar success rate.

In summary, our contributions are as follows:
• We propose a novel approach utilizing knowledge

graphs to augment the attention mechanism for
transformer-based action anticipation, which we refer
to as NeSCA.

• Through extensive experiments, we demonstrate that
our proposed method outperforms current state-of-the-
art methods for action anticipation on two challenging
benchmarks, 50Salads and Breakfast.

• We show how our proposed method can be utilized for
effective HRC that anticipates tasks and subsequently
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Fig. 2: NeSCA utilizes a transformer architecture for ac-
tion anticipation (top); however, in parallel, Concept Graph
Search (bottom) is utilized to obtain the set of active con-
cepts, including related affordances, in the scene. These
concepts are further used to refocus the attention in the
transformer toward the relevant visual features.

supports human users in the creation of a salad in a
real-world tabletop manipulation setting.

II. RELATED WORK

Action anticipation is a field of research that is currently
gaining a lot of attention due to its usefulness in areas such
as autonomous driving and human-robot interaction [23]. In
this study, we introduce a new approach that makes use
of structured domain knowledge to predict long-term action
sequences based solely on short video contexts.

Knowledge Graphs for Computer Vision. The emer-
gence of the utilization of structured domain knowledge, in
the form of knowledge graphs, in vision models is gaining
traction as it grounds their predictions by establishing a com-
prehensive understanding of entities and their interconnected
relationships, thereby, enhancing overall model interpretabil-
ity and performance. [16] introduced a knowledge graph
as a structured prior for image classification and proposed
the Graph Search Neural Network, demonstrating its perfor-
mance improvement by integrating knowledge graphs into
the vision classification pipeline. Further, [13] extended it to
include the augmentation of novel concepts, encompassing
visual objects and compound concepts such as affordances,
attributes, and scenes. In this work, we extend the idea by
refining the propagation framework from [13] to identify
relevant object affordances along with the relevant tools that
can be used to afford it in the desired manner. To the best
of our knowledge, our approach is the first one to utilize the
information about the affordances of the objects in the scene
to perform action anticipation. Our methodology represents
a novel approach to leveraging information regarding the
affordances of objects within a scene for action anticipation.

Action Anticipation. The task of action anticipation from
videos [24] revolves around predicting future actions based
on a specific segment of the video. With recent advancements
in foundational vision models and the availability of large-
scale human-centric datasets [25], this domain has gained
significant attention. Many recent approaches have been
developed to predict a single future action within a short



time frame, typically spanning a few seconds [3], [4], [5], [6],
[7], [26], [8], [9], [10]. However, a notable emerging trend is
long-term action anticipation, which emphasizes predicting
a sequence of future actions occurring in the distant future
from a lengthy video [17], [18], [19], [7], [20], [15]. While
much attention has been paid to predicting long-term actions
with ample video context, limited research has addressed
using short video contexts to predict long-term future action
sequences. Our work addresses this particularly challenging
task: Action anticipation for long-horizon predictions given
only a short observation context.

Human-Robot Collaboration. Several approaches have
performed human-robot collaboration by anticipating what
actions might be useful in the current setup, by either
utilizing gaze information from the user [27] or performing
action prediction [28], [29]. Approaches utilizing action
anticipation for human-robot collaboration circumvent the
need for explicit task specification, accommodating situations
where human intent is ambiguous or multiplicitous, while
also streamlining everyday tasks by eliminating the time-
consuming process of articulating actions. While these works
can infer current actions, they fall short in capturing the
temporal aspect of visual inputs to make predictions not
only about ongoing actions but also anticipate future actions.
Other methods have been proposed utilizing a human-in-the-
loop approach to improve the learned policy in an online
manner [30]; however, enabling these interactions can be
expensive, and therefore, offline finetuning approaches have
been identified as an effective solution to deploy robots in
real-world scenarios [31]. This work integrates the advan-
tages of predicting future actions and offline fine-tuning with
a finite curated dataset in a novel environment to enhance the
prediction of useful actions considering the subject’s actions.

III. KNOWLEDGE-GUIDED ACTION ANTICIPATION

This section introduces our proposed method, NeSCA,
as well as its application to Human-Robot Collaboration
(HRC). At its core, NeSCA, consists of two core components:
(1) a neuro-symbolic graph-search approach that extracts
relevant scene concepts (i.e., objects and their affordances,
see Sec. III-A); and (2) a modified attention mechanism
informed by our extracted concepts, allowing us to anticipate
future actions from short observation context (see Sec. III-B
and III-C). With this set of predicted actions, we demonstrate
the utility of NeSCA in an HRC task, utilizing our fast action
anticipation from short observed contexts, which allows us
to effectively assist a user (see Sec. III-D).

Problem Statement. NeSCA (see Fig. 2) addresses the
problem of predicting a sequence of future actions a from
a short video observation F that can subsequently be used
to provide effective assistance to a human user. In our
setting, we observe α-percent of a video and predict actions
in the next β -percent of the video, with respect to the
average total video length obtained from the training set.
Given an observed video sequence F, we learn a function
a = fθ (F) that predicts a sequence of actions a happening
after the end of F. The video sequence F ∈ RH×W×C×N
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Fig. 3: Our Dummy Kitchen setup and available objects
for creating salads in an HRC task involve cutting/peeling
vegetables, preparing dressing, and mixing/serving the salad.

is represented as a four-dimensional matrix describing the
height H, width W , and channels C of each video frame
Fn, and the number of observed frames N. The action
sequence a = [(a0,d0,c0), ...,(aM,dM,cM)] contains a list of
M tuples describing the action sequence a, its duration d,
and confidence c.

To actuate the robot, we propose a policy ar = π( fθ (F),S)
utilizing the predicted set of future actions. Given a skill
library S and a list of future actions fθ (F), π identifies a
suitable action ar for a robot to execute in our HRC task.

Training Procedure. We train our model from a dataset
D where each sample si = [Fi,ai] contains the video Fi and
action-sequence ai, where i is the index of the video, along
with a single agent performing a task. After training, we
provide the trained action anticipation model fθ (. . .) with a
new, previously unseen video sequence, showing α percent
(with respect to time) of the full video, tasking the policy
with predicting the most likely action for each frame in the
following β percent of the remaining video.

A. Extracting Domain Knowledge

We provide a hand-crafted KG as the source of domain
knowledge, establishing connections between various con-
cepts. In the following, we refer to objects and affordances
as concepts. Each node in our KG is initialized by utilizing
Grounded-DINO [32]. To utilize this knowledge during in-
ference, given a short sequence of video frames, we extend
our prior work [13] to the domain of videos. Intuitively, this
approach utilizes a neural object detector to extract a set of
initial concepts and subsequently utilizes them as a starting
point for a graph search through the knowledge graph K. We
create the graph K consisting of two types of nodes: object
nodes (e.g., salt, knife, bowl) and affordance nodes (e.g.,
graspable, pourable, cuttable). For example, a tomato has a
connection to cuttable, which, in turn, connects to knife.

In the first step, we extract a set of relevant concepts from
the video frames F, using open-vocabulary object detection
as proposed in [32]. These initial concepts CO are then
utilized as a starting point for our iterative Concept Graph
Search (CGS), forming the initial set of active concepts in
our KG. CGS has two main components: a) the Propagation
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Fig. 4: Example of our assistive HRC system: Shortly after the user starts to prepare the dressing, the robot identifies the
intention and correctly assists the user in creating the dressing by adding further ingredients.

Network, which generates frame-conditioned representations
(based on F) for all candidate concepts directly connected
to the active ones using Graph Attention Network v2 [33],
and b) the Importance Network, responsible for computing
a scalar importance value for each candidate node, given F.
At the end of each importance estimation, concepts above
a predefined importance threshold are incorporated into the
set of active concepts. This process is repeated for T itera-
tions, alternating the Propagation and Importance Networks.
Together the role of these networks is to perform message
passing via nodes corresponding to concepts prevalent in
the video. After expanding all relevant concepts CF through
T iterations, we generate a latent representation cKG that
encapsulates the information about the relevant objects in
the scene along with their associated affordances. Intuitively,
CGS allows us to extract the relevant concepts concerning
the observed video and utilize them as additional domain
knowledge during the action anticipation (see Sec. III-B).

B. Action Anticipation with Domain Knowledge

This section introduces our main contribution, detailing
how domain knowledge cKG can be utilized for action antic-
ipation. In particular, our architecture is motivated by [15];
however, we alter the attention mechanism of the encoder
and decoder to allow for the integration of additional do-
main knowledge, thus, improving the contextual reasoning
capabilities of the action-anticipation pipeline.

However, before we detail the novel attention mechanism
in Section III-C, we briefly outline the standard transformer-
based part of our pipeline, consisting of an encoder fe(. . .)
and decoder fd(. . .) (see Fig 2). The encoder eenc = fe(F)
utilizes I3D [34] features xI3D

n of the observed video F and
produces a set of embeddings eenc ∈ Rn×D for each video
frame n and encoding dimension D. The encoder processes
visual features extracted from the observed segment of a
video F by employing multi-head self-attention. The result-
ing output is then provided to a classifier, aO = fobs(eenc),
determining the actions corresponding to the observed part
of the video segment.

The decoder employs the embeddings of the observed se-
quence eenc generated by fe(. . .) along with learnable tokens
referred to as actions queries, initialized with zero vectors.
Similarly to the encoder, the decoder edec = fd(eenc,χ)
produces a set of embeddings edec ∈ Rp×D where p is the
upper bound of the future actions that can be predicted and
χ ∈Rp×D are the p action queries. Subsequently, we utilize
two separate, fully connected networks for predicting the

future actions apred and their durations dpred respectively.

dpred = fdur(qLd
n ) and apred = fact(qLd

n ) (1)

Finally, we retrieve confidence cpred for each predicted ac-
tion. We quantify the certainty of the model’s prediction us-
ing negative entropy of the predicted distribution of actions,
i.e., cpred =σ(apred) log(σ(apred)), where σ(.) represents the
softmax function.

C. Knowledge-Guided Attention Mechanism

So far, we have discussed how relevant domain knowledge
is retrieved from a symbolic KG, as well as the general
action anticipation pipeline. In this section, we describe our
main contribution: Altering the multi-head attention layers
of the encoder fe(. . .) and fd(. . .) to improve contextual
prediction by leveraging our extracted domain knowledge
cKG. Intuitively, the extracted domain knowledge establishes
a connection between the objects in the scene and their
respective affordances, improving the predicted actions’ rel-
evance by boosting or attenuating the attention between
different features. To this end, we introduce a rectification
matrix R inside the multi-head attention equation. We obtain
a separate knowledge-guided rectification matrix for our
encoder and decoder, namely Re and Rd , with which we
modify the attention mechanism:

KG-Attne/d(Q,K,V) = so f tmax
(QRe/dKT

√
dk

)
V (2)

Boosting or suppressing features using the rectification ma-
trix allows our model to prioritize the features associated
with objects having relevant affordances, giving them higher
importance than those not present in the scene. The rectifi-
cation matrix is presented as a diagonal matrix for which we
retrieve the diagonal by predicting it from cKG. Particularly,
we a utilize Re/d = f R

e/d(cKG) to predict each diagonal, where
f R
e/d(...) is implemented as an LSTM. Note that f R

e (. . .) and
f R
d (. . .) are separate networks that do not share parameters

amongst themselves.

D. Human-Robot Collaboration using Anticipated Actions

Having access to a sequence of likely future actions as
well as their durations and confidences, we define a policy
ar = π( fθ (F),S) that chooses an appropriate assistive robot
action ar from a set of possible skills S (see Fig 4). Selecting
the appropriate action ar ∈ S is a challenging task as, upon
selection of an action, the robot is committed to performing
it. This commitment requires time and utilizes objects in



Frame-wise (↑ larger is better) / Action Sequence (↓ smaller is better) Next Action (↑)
Model 5-10 5-20 5-30 5-50 10-10 10-20 10-30 10-50 5 10

50Salads
KG Baseline [13] 6.92 / 4.88 6.21 / 6.20 6.01 / 7.44 5.58 / 7.92 7.13 / 4.50 6.48 / 5.98 6.07 / 7.37 5.78 / 7.88 8.0 9.0
Video-Llama [35] - / 6.44 - / 7.20 - / 7.90 - / 9.12 - / 6.12 - / 6.80 - / 7.86 - / 9.02 6.0 7.0

GPT4-V [36] - / 3.52 - / 5.94 - / 7.04 - / 7.12 - / 3.86 - / 4.67 - / 5.16 - / 7.05 12.0 32.0
CNN [17] 7.42 / 3.22 6.97 / 5.07 6.67 / 5.86 6.40 / 6.11 8.50 / 3.33 7.80 / 4.87 7.45 / 5.20 6.92 / 6.60 10.0 28.0
RNN [17] 7.98 / 3.00 6.90 / 5.46 6.48 / 6.30 6.42 / 6.16 8.78 / 2.94 7.92 / 4.83 7.57 / 5.20 7.26 / 6.52 12.0 30.0
FUTR [15] 8.90 / 2.98 7.46 / 4.52 7.29 / 5.40 8.63 / 6.80 15.17 / 2.74 11.34 / 4.04 11.31 / 4.98 11.36 / 6.04 12.0 36.0

NeSCA (T = 0) 7.95 / 3.08 7.86 / 4.42 6.15 / 5.20 7.10 / 6.58 24.0 / 2.60 16.90 / 3.72 11.17 / 4.98 11.30 / 6.80 10.0 34.0
NeSCA (T = 1) 17.86 / 2.84 16.25 / 4.22 10.84 / 5.14 9.38 / 6.70 23.15 / 2.54 17.28 / 3.78 16.62 / 4.76 13.61 / 5.74 14.0 42.0
NeSCA (T = 2) 13.67 / 2.90 9.60 / 4.40 8.62 / 5.32 8.51 / 6.60 22.86 / 2.56 16.86 / 3.71 14.70 / 4.52 12.66 / 5.75 12.0 38.0

Breakfast
KG Baseline [13] 5.44 / 8.22 4.95 / 9.10 4.22 / 9.66 3.98 / 10.02 6.02 / 7.90 5.15 / 8.77 4.86 / 9.21 4.51 / 9.78 7.22 12.31
Video-Llama [35] - / 11.20 - / 12.24 - / 13.62 - / 13.82 - / 11.08 - / 12.04 - / 12.98 - / 13.22 5.39 9.80

GPT4-V [36] - / 4.56 - / 6.04 - / 6.93 - / 7.26 - / 5.12 - / 6.08 - / 7.26 - / 7.62 19.27 22.45
CNN [17] 5.76 / 6.98 5.52 / 7.22 5.45 / 7.98 4.80 / 8.43 7.84 / 6.48 6.62 / 6.95 6.02 / 7.44 5.17 / 8.13 11.45 18.90
RNN [17] 6.16 / 6.76 5.60 / 7.05 5.53 / 7.69 4.96 / 8.09 7.67 / 6.67 6.73 / 6.90 6.15 / 7.44 5.22 / 8.12 12.02 19.96
FUTR [15] 9.54 / 1.63 7.24 / 2.07 6.42 / 2.40 5.58 / 3.02 14.70 / 1.41 12.55 / 1.76 12.10 / 2.06 11.71 / 2.62 23.97 30.05

NeSCA (T = 0) 9.69 / 1.65 7.20 / 2.04 6.55 / 2.40 5.62 / 3.06 15.30 / 1.43 13.23 / 1.82 12.24 / 2.22 11.65 / 2.68 20.55 25.47
NeSCA (T = 1) 9.91 / 1.60 7.95 / 2.02 6.86 / 2.34 5.88 / 2.98 15.53 / 1.41 13.52 / 1.76 13.07 / 2.09 11.94 / 2.63 25.25 26.45
NeSCA (T = 2) 9.75 / 1.62 7.60 / 2.05 6.70 / 2.38 5.76 / 3.00 15.52 / 1.36 13.46 / 1.72 12.68 / 2.15 11.84 / 2.60 23.32 30.35

TABLE I: NeSCA performance compared to the current state-of-the-art in long-term action anticipation for different horizons
of α−β (top row). The numbers in boldface and underlined indicate the highest and the second-highest accuracy, respectively.

the environment that could have been used otherwise by the
human partner.

Thus, we define four selection criteria to choose an
appropriate action or not to choose an action at all and
continue to observe the user. First, the cumulative duration of
actions ds = ∑

i=r−1
i=0 (di) for any action candidate ar, where

0 ≤ r ≤ |a| must be larger than the average length dr of
action candidate ar (obtained from the training dataset). This
constraint ensures that the human collaborator would not
have done or needed to do the chosen task before the robot
can complete it. Secondly, we ensure that all objects needed
for a chosen action ar, as defined in our skill library S,
are observed in our set of active concepts cKG and that all
objects have the appropriate affordances. For example, if we
consider the action of cutting a tomato, the robot requires a
knife, cutting board, and tomato, but also that the tomato
has the affordance of being cuttable (i.e., is not already
in a diced state, which would not afford the ability to be
cut it further), and hence, these concepts should be part of
the list of active concepts. Thirdly, we verify whether the
prerequisites for the specific task have already been fulfilled;
for instance, the action of placing tomato in bowl necessitates
that the cut tomato action precedes it. Lastly, we consider the
confidences cpred for the candidate action ar. Specifically, we
only consider actions for which the estimated confidence is
above a pre-defined threshold to ensure that the robot only
executes the most likely actions.

With these four constraints, we define policy π(. . .) that,
given the predicted action sequence for horizon β over an
observed time-horizon α , selects a single action ar that
should be executed by the robot. However, note that if no
such action that satisfies all four constraints can be found,
policy π will return a no-op action. In such cases, the policy
will continue attempting to identify an appropriate action as
further video frames are available. Similarly, when the robot
is currently committed to executing a previously selected

action ar, the robot will ignore action choices made by policy
π until the prior action is completed.

IV. EXPERIMENTS

In this section, we evaluate NeSCA on two common
benchmarks for action anticipation – 50Salads and Breakfast
– and demonstrate how action anticipation can be used
for human-robot collaboration in a real-world task. Our
benchmarks (see Sec. IV-A) extensively evaluate the ability
to utilize short video contexts while predicting long-horizon
future actions. In our real-world setup (see Sec. IV-B), we
utilize the ability to correctly anticipate actions to facilitate
the collaborative creation of a salad.

a) Datasets: We evaluate the effectiveness of NeSCA
using two publicly available benchmark datasets for action
anticipation for in-home environments, particularly kitchen
scenarios, as well as one real-world robotics dataset: 1)
The 50Salads dataset [21] with its five splits, densely an-
notated with 17 fine-grained action labels and three high-
level activities; 2) The Breakfast dataset [22] with four splits,
categorizing each frame into one of 10 breakfast-related
activities using a comprehensive set of 48 fine-grained action
labels; and 3) a dataset of 20 videos collected from our
dummy kitchen setup (see Fig 3). Among these dummy
kitchen videos, we designate half of them for fine-tuning the
model, while the remaining half are reserved for assessing
the performance of the fine-tuned model.

b) Metrics: To evaluate the efficacy of our approach,
we calculate the Mean over Classes (MoC) accuracy [17].
This metric is computed by comparing the predicted actions
to the ground-truth actions for all future frames within the
horizon window defined by β , making it the most com-
prehensive metric as it captures action sequence and action
durations. To quantify the ability of our model to identify
the sequence of the next actions without considering their
durations, we employ a metric that computes the minimum



Fig. 5: Attention to visual features relevant to our task, as
attended to by FUTR (Left) and NeSCA (Right). With our re-
focusing approach, attention is heightened for areas having
objects relevant to tasks after the current cutting lettuce.

number of addition, deletion, or substitution operations re-
quired to exactly match the predicted to the ground truth ac-
tion sequence. While neglecting action durations, this metric
captures the semantic understanding of the task composition.
Derived from this metric, we also employ immediate single
next-action prediction as a metric. Finally, in our real-world
setup, we utilize the accuracy of completing an action, i.e.,
anticipating the right action and executing it, as our primary
evaluation metric.

A. Action Anticipation Benchmark

a) Action Anticipation Performance: We evaluate
NeSCA by comparing the performance on all metrics av-
eraged across all splits against long-term action anticipation
baselines [17], [15], depicted in Table I. [17] uses action
labels extracted from the action segmentation model, while
our work and the most recent state-of-the-art [15] use visual
features from the observed video segments. In addition, we
conduct a comparative analysis with two additional baseline
methods. The first is a KG-only approach proposed by [13],
which aims to extract all objects along with their associated
affordances in each pth frame of the video. This method
incorporates a decay mechanism with a rate of γ to account
for the diminishing importance of active nodes over time.
Finally, we also utilize a set of multimodal fusion models,
namely Video-Llama [35] and GPT4-V [36], where we begin
by providing a comprehensive explanation of the entire
scenario and subsequently prompt it to produce predictions
for future actions from a predefined list of possibilities. As
can be seen in Table I, NeSCA outperforms the current state-
of-the-art in long-term action anticipation using short context
in all the metrics on the 50Salads dataset and on nine out
of the ten metrics we used on the Breakfast dataset. On the
MoC metric, NeSCA outperforms the baseline by up to 9%
on 50Salads and 1% on Breakfast.

As our method relies on a fixed number of iterations
T during CGS, we also evaluated varying numbers with
0 ≤ T ≤ 2. The most favorable outcome was observed
when T was set to 1. In the case of T = 0, no graph
propagation was performed, and the model relied solely
on objects detected by our object detector. As a result, its
performance resembled that of [15], which lacks information
about associated object affordances. On the other hand, when
T = 2, the list of concepts considered by the model expanded
beyond the context relevant to the video which resulted
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Fig. 6: Success rate of NeSCA in our kitchen setup with
varying context lengths. The observed percentage is reported
with respect to the average length of finetuning videos.

in the model receiving information that was redundant or
unnecessary, thereby, confusing the model. Empirically, we
chose a propagation of T = 1 for all our experiments.

b) Qualitative Evaluation: We showcase an example
to compare NeSCA against [15] by evaluating the time-
series segmentation of the predicted future actions. Figure
7 depicts an example from our kitchen setup where the
model observes two actions in the α = 5% (≈ 6 seconds)
observed segment of the video and then predicts what actions
take place in the next β = 30% (≈ 36 seconds) of the
video. While our model accurately identifies the sequence
of all four ground-truth future actions and their approximate
durations, the baseline approach failed to identify two out
of the four actions correctly. We attribute our approach’s
improved performance to our model’s ability to focus on the
objects currently in use and objects that could be used later
by extracting their associated affordances.

The re-focusing of our model is demonstrated in Figure 5,
highlighting the areas our approach (right) and [15] (left)
focuses on. Our model directs attention to both the bowl and
the plate, even in scenarios where the subject is not directly
interacting with them. This capability enables our model to
accurately anticipate future actions, such as put cheese into
bowl and subsequently serve salad onto plate. In contrast, the
baseline approach indiscriminately focuses on many objects
in the scene, neglecting to discern the relevant objects based
on their affordances and their potential utility in the context
of ongoing and completed actions.

B. Real-World Human-Robot Collaboration

After showing the effectiveness of our NeSCA approach
on two common baselines, we utilize it in an HRC scenario
of preparing a salad in a joint task between a robot and a
human user. To bridge the domain gap that arises due to the
shift in physical attributes (for example, lighting conditions,
the color of prevalent objects, etc.) of the real-world kitchen
setup and the trained dataset, we finetune our trained model
to a dataset comprising of both the original videos and 10
videos collected on our kitchen setup.

a) Transfer Learning on Kitchen Environment: We
assess the effectiveness of our fine-tuned model on our
kitchen environment depicted in Table II, which utilizes
the same action space as the 50 Salads dataset. During
inference, we provide access to a pre-defined skill library S=
{S0,S1,S2...Sm} where each high-level skill Si corresponds to
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Fig. 7: Sample result of NeSCA on the real-world kitchen setup, observing 5% and predicting another 30% into the future,
along with the predictions made by FUTR [15] and the ground truth action labels.

Approach Finetuning Confidence Success MoC
α = 5% α = 10% α = 5% α = 10%

Autoregressive 13.0 17.4 6.2 7.4
Autoregressive ✓ 27.3 36.4 8.9 12.2

FUTR 16.6 20.8 6.7 9.2
NeSCA 19.2 23.1 6.9 9.9
NeSCA ✓ 33.7 41.8 12.4 18.1

NeSCA (Full) 35.2 43.6 14.4 20.2
NeSCA ✓ ✓ 42.8 50.1 - -

TABLE II: Performance of the action anticipation pipeline,
NeSCA, for human-robot collaboration on our kitchen setup.
Success values represent the real-time joint performance of
anticipating the sequence of actions and performing the
actions in the kitchen setup, while the MoC values represent
the accuracy of framewise prediction of actions over the
collected trajectories from the kitchen setup. The average
length of sequences (according to which the percentages are
calculated here) is 120 seconds.

a specific sequence of low-level control inputs, conditioned
on the placement of the objects. We use a top-down RGB
camera (see Figure 3) to track our objects using Scale-
Invariant Feature Transform (SIFT) [37] and color feature
detection. Given the skill library and video stream, our
action anticipation module operates in real-time to deduce
future actions and their associated confidences. When the
four action criteria mentioned in Section III-D are met, the
respective instruction is sent to the robot for execution.

The skills in the library are broadly categorized into three
“grasp types”: a top-down grasp, suitable for pick-and-place
actions with items like vegetables; a sideways grasp, ideal
for picking up and pouring objects such as olive oil or
vinegar bottles; and an aligned grasp, designed for handling
oriented tools like knives and spatulas. The aligned grasp
feature is engineered to bring and hand over tools to a human
collaborator. In this process, the robot brings the instructed
tool near the potential area of use for easy accessibility.

For real-world experiments, we define success as the
robot correctly identifying future actions and executing the
respective target action. The observed % of video, denoted
by α , is computed by comparing the duration of human
action observed by our model with the average duration of
a video in our finetuning dataset. This evaluation involves
comparing its performance against several baselines, namely:
(1) a non-finetuned model, (2) an autoregressive classi-
fier that predicts the next action by considering extracted

video features in addition to prior action predictions, and
finally, (3) a model with the same architecture but trained
from scratch on 25 videos collected in our dummy kitchen
environment. While training from scratch on our dummy
kitchen environment only uses 25 videos as compared to
the original 50Salads dataset, we find that providing further
videos does not improve the performance of the model
any further. In addition to our approach, we also compare
against the best performing state-of-the-art method in long-
term action anticipation, FUTR [15]. In Table II, we have
observed a significant performance improvement when fine-
tuning the model using a few videos from our kitchen setup.
Moreover, NeSCA consistently outperforms autoregressive
baselines, underscoring the significance of leveraging not
only the visual-temporal features of the video but also
exploiting information about objects in the scene and their
associated affordances. In comparison to a model trained on
the complete dataset (see NeSCA (Full) in Table II), our
fine-tuned approach demonstrates a superior success rate and
comparable frame-wise action prediction accuracy. Note that
we have not presented the MoC values for our model with
confidence estimation, since this is specifically incorporated
into the model for real-time evaluation and is not applied in
the assessment using our collected set of videos.

Further, we also evaluate the dependence of NeSCA and
FUTR on the percentage of video observed on our kitchen
setup (see Figure 6). As is expected, the performance of both
approaches increases as the percentage of video increases,
but the difference is much more pronounced when the context
window is shorter. Further, the dashed line represents an
approach that, instead of employing a sliding video window
focusing on a specific fixed context, utilizes the entire video
up to that point. By observing only 10% of the video,
NeSCA outperforms the non-sliding window approach. This
underscores the ability of NeSCA to draw meaningful infer-
ences with a very short context window and highlights the
impact of using uncertainty-based thresholding to improve
the success rate in real-world scenarios.

Finally, we also evaluate the efficacy of our approach to
encode the set of active concepts in the rectification matrix.
For this, we take an example where our model accurately
predicts the appropriate sequence of future actions given the
fulfillment of preconditions. Subsequently, we deliberately
remove one of the crucial connections or edges within the
active knowledge graph and observe the resulting change in



the proposed action. In the example, our model correctly
anticipates the action of cutting a tomato. However, upon
removing the connection between the tomato node and the
node representing the affordance cut, we observe a shift in
the model’s prediction from cutting the tomato to mixing
ingredients in a bowl, reflecting the effective encapsulation
of relevant concepts using the rectification matrix.

C. Discussion, Limitations and Future Work

While our experiments demonstrate the value of action
anticipation in human-robot collaboration, it is crucial to
acknowledge that real-world human behavior is highly unpre-
dictable. This necessitates the ability of action anticipation
approaches to quickly and accurately predict actions from
only short observations of task-relevant behavior. However,
exploring more complex methods that incorporate additional
factors such as gaze, behavior patterns, or personalized
action anticipation tailored to individual differences could
be promising avenues for future research. Additionally, we
demonstrated that augmenting action anticipation with sym-
bolic knowledge greatly benefits the model’s performance;
however, our approach relies on the availability of a hand-
crafted knowledge graph that encompasses relevant scene
objects and their respective affordances. To address this
issue, we plan on generating relevant knowledge graphs in a
data-driven manner.

V. CONCLUSIONS

Our novel knowledge-guided action anticipation approach,
NeSCA, considers both objects and their affordances in the
scene, demonstrating state-of-the-art performance on two
action anticipation datasets, particularly from short task-
relevant observations. A key to our method’s success is the
integration of domain knowledge into the attention mecha-
nism of the transformer, allowing for effective boosting or
attenuation of visual features in the short context provided to
the model, allowing it to make high-quality predictions faster.
Given effective action anticipation through our method, we
demonstrate its utility in an assistive HRC task, in which a
robot successfully assists in the creation of a salad.
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