Let Me Help You! Neuro-Symbolic Short-Context Action Anticipation

General Robotics

Sarthak Bhagat*', Samuel Li', Joseph Campbell', Yaqi Xie', Katia Sycara', Simon Stepputtis'

Carnegie Mellon University Robotics Institute

*General Robotics, 'Carnegie Mellon University

Problem Statement

How can robots quickly and accurately predict human intentions from limited observations to enhance collaborative tasks, such as assistive cooking?

Knowledge Guided Action Anticipation

A. Extracting Domain Knowledge **KG Construction:** We build a knowledge graph with object nodes (e.g., *knife*) and affordance nodes (e.g., *cuttable*), using off-the-shelf object detectors for initial concept extraction from video frames.

Concept Expansion (CGS): CGS iteratively updates relevant concepts using a **Propagation Network** (GATv2) and **Importance Network**, producing a latent representation of objects and their affordances for action anticipation.

B. Action Anticipation with Domain Knowledge

Transformer Architecture: We adapt a transformerbased pipeline for action anticipation by modifying the attention mechanism to integrate domain knowledge, improving contextual reasoning.

Acknowledgements: We would like to acknowledge the support from DARPA under grant FA8750-23-2-1015, AFOSR under grants FA9550-18-1-0251 and FA9550-18-1-0097, and ARL under grant W911NF-19-2-0146 and W911NF-2320007.

- **Encoder** extracts visual features from video frames using I3D, producing frame embeddings.
- **Decoder** predicts future actions and their durations using these embeddings and learnable action queries.
- **Prediction and Confidence:** We estimate action confidence using the **negative entropy** of the softmax distribution over predicted actions.

Concept Graph Search

Encoder/Decoder Attention Boosting

C. Knowledge Guided Attention

We introduce a **knowledge-guided attention** mechanism that uses a rectification matrix derived from domain knowledge to boost or attenuate attention between features, enhancing contextual predictions in action anticipation.

$$\text{KG-Attn}_{e/d}(\mathbf{Q},\mathbf{K},\mathbf{V}) = softmax\left(\frac{\mathbf{QR}_{e/d}\mathbf{K}^T}{\sqrt{d_k}}\right)\mathbf{V}$$

Action Anticipation Results

- Outperforms the current state-of-the-art in long-term action anticipation using short context in all the metrics on the 50Salads dataset and on nine out of the ten metrics we used on the Breakfast dataset.
- On the MoC metric, outperforms the baseline by up to 9% on 50Salads and 1% on Breakfast.

Human Robot Collaboration Results

Approach	Finetuning	Confidence	Success		MoC	
			$\alpha = 5\%$	$\alpha = 10\%$	$\alpha = 5\%$	$\alpha = 10\%$
Autoregressive			13.0	17.4	6.2	7.4
Autoregressive	1		27.3	36.4	8.9	12.2
FUTR			16.6	20.8	6.7	9.2
NeSCA			19.2	23.1	6.9	9.9
NeSCA	1		33.7	41.8	12.4	18.1
NeSCA (Full)			35.2	43.6	14.4	20.2
NeSCA	1	1	42.8	50.1		1

Contributions

We introduce a knowledge-guided action anticipation method that leverages object affordances to enhance short-horizon prediction accuracy in human-robot collaboration tasks.

Takeaways

Our approach improves prediction speed and accuracy, enabling more responsive and effective robotic assistance in collaborative tasks like salad preparation.

Paper, Code and Dataset

