Empathetic engagement drives nonverbal interactions between humans
and a small-scale robot
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Abstract— Recent work in Human-Robot Interaction (HRI)
has called for a reexamination of the assumptions under-
lying human-centered frameworks of interaction and social
acceptability. Rethinking human-centered models of sociality is
particularly important for understanding empathy and affective
responsiveness, as it enables us to imagine alternative modes
of connection beyond the human. In this study, we designed a
minimalist, non-humanoid tiny robot capable of displaying a
limited set of affective expressions in response to non-verbal,
tactile interactions, and tested the effectiveness of the robot’s
design through an open-ended, qualitative study. Our findings
indicate that minimal emotional expression — even at small
scales and in non-humanoid design — can prompt empathy,
attentiveness, and responsiveness in human-robot interactions.

I. INTRODUCTION

Research on social acceptability and effective social robot
design has tended to focus on human resemblance, both in
morphology and in interactional patterns [1], [2], [3]. Yet as
robots increasingly populate diverse parts of our world, it
is important to understand how robots are perceived, under-
stood, and accepted across scales, morphologies, and forms
of interaction. Recent work in Human-Robot Interaction
(HRI) has called for a reexamination of the assumptions un-
derlying these human-centered frameworks [4], [5], [6], [2],
particularly given that research has shown humans identify
with robots across contexts, uses, and forms, not just with
social robots in social contexts [7], [3].

Rethinking human-centered models of sociality is particu-
larly important for understanding how and why empathy and
identification are elicited between humans and robots. For
example, human participants interacting with a commercially
available, non-humanoid companion robot, Cozmo, sought to
understand why the robot was sad, and how they could ame-
liorate any potential negative interactions to make the robot
happy again [8]. Even in a virtual environment featuring
drones with expressive faces, participants extended empathy
toward the drone, and expressed wanting to give it a hug.
While part of this identification is explained by the human
tendency to anthropomorphize, anthropomorphism itself does
not happen consistently across contexts [7], and anthropo-
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Fig. 1: The interactive tiny robot, pictured next to a US
penny, is approximately 1 cubic inch in volume (25 mm X
26 mm x 24 mm) with a mass of 10.8 g. The robot has on-
board sensing and computation to display affect in response
to interaction.

morphic embodiments are not universally more effective than
zoomorphic or mechanical embodiments [1], [9].

Furthermore, situating HRI in purely human or anthropo-
morphic terms constrains design innovations and the pos-
sibilities we can imagine for social interactions between
humans and embodied artificial agents [2], [6], [10], [4]. It
is necessary, therefore, to move beyond relying on human
physical and social characteristics, yet such a project first
requires a critical evaluation of our foundational assumptions
about effective social design and a remapping of the mini-
mal mitigating factors encouraging empathetic identification
between humans and robots.

As Ringe et al. [11] have recently argued, HRI needs a
more rigorous system of design feature classification beyond
the loose categories of anthropomorphic, zoomorphic, and
mechanical. Studies seeking to categorize robot features,
including Ringe et al., tend to rely on images or video of
existing robots [11], [1]. While this approach is expedient for
analyzing large datasets, it cannot capture the full effects of
embodied design. The long-term project from which the pilot
study described in this paper is drawn intervenes in this gap
and contributes to ongoing understandings of design catego-
rization and reception through using real, embodied robots
and adopting a user-centered, iterative process of design and
testing, in which ongoing analysis of user experience shapes
design decisions.

As a first step, we designed a minimalist, non-humanoid



tiny robot (Fig. 1) capable of displaying a limited set of
affective expressions in response to participant touching
and handling. As Urakami and Seaborn [3] argue, basic
design elements (e.g. size, shape, form, texture, color) have
the capacity to shape affective engagement, as even these
details are communicative. We thus consciously limited the
embodied and expressive design features of our robot and
observed interactions through an open-ended study protocol
that enabled us to gain insights into processes of identifica-
tion and empathetic response in human-robot interactions.

II. ROBOT DESIGN

In this section, the robot design is briefly outlined to detail
its explicit hardware and software capabilities. The robot
itself has a small form factor, occupying a volume of 25 mm
X 26 mm X 24 mm with a mass of 10.8 g. This small-scale
design constrains the hardware available to be integrated, but
this constraint is purposeful, as it enables us to focus on the
key design features enabling emotional recognition. At the
same time, the unintimidating, small-scale embodiment of
the robot invites tactile interaction between a human and the
robot.

The electrical hardware of the robot consists of two
custom-printed circuit boards (PCBs) that are stacked to
ensure electrical and mechanical connections. The base board
consists of a RISC-based microcontroller with 4kB flash
memory (ATtiny44, Atmel) which controls a small 0.49in
(64px x 32px) monochrome OLED display. The second
custom PCB consists of electronics for inertial measure-
ments (MPU-6050, TDK InvenSense). Finally, the PCBs
are connected to a 3.7V 30mAh LiPo battery through a
voltage regulator (TPS7A0533PDBZR, Texas Instruments)
to provide stable power to the robot.

The body of the robot and four wheels were 3D printed
using an SLA 3D printer (FormLabs Form 3+). Wheels were
friction fit to each of the motors, though the robot did not
move in this study, as the driving sets and passive wheels
were attached to the chassis with a carbon fiber rod axle.
7 mm diameter by 2 mm thick o-rings were wrapped around
each wheel as a tire. A photograph of the final assembled
robot is shown in Figure 1.

A. Expressive software design

Four different expressive faces, along with a neutral face,
were designed for the robot. These faces were based on
Ekman’s universal facial expressions [12]: happy, sad, angry,
and surprised. Since our goal was simplicity, we chose not
to include Ekman’s other two expressions — fear and disgust
— which tend to be more complex. We further included
a neutral face to serve as a baseline and transition point.
Recent studies of a simulated drone with similar categorical
emotional states of varying intensities observed that humans
based their interpretations of the facial expression on cate-
gory over intensity [13]. This suggests we can minimize the
number of emotional displays to simple categories without
sacrificing effective expressiveness.
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Fig. 2: A software finite state machine utilizes sensory
feedback from an on-board IMU to display faces as a user
interacts with the robot.

A software finite state machine was designed to display a
static face given a sensed inertial state with the robot, shown
graphically in Figure 2. When a user is not interacting with
the robot, i.e., measurements are not beyond the noise level,
the robot displays a neutral face. The robot will then display a
happy, sad, or angry face based upon the sensed accelerations
of the IMU. If the robot is inverted, it will display a surprised
face. The robot can transition between emotive faces based
upon increasing interaction, and can be reset to a neutral
state if left alone.

III. METHODOLOGY

A. Study design

The aim of this study was to observe the effectiveness of
the robot design for eliciting empathetic responses over the
course of nonverbal, tactile interactions. A prior study [14]
confirmed that human participants were able to recognize
the designed robot faces. In that study, participants were
randomly shown the five facial expressions (neutral, happy,
sad, angry, and surprised) and were asked to name them
as they appeared, with all participants correctly identifying
the expressions. Therefore, this study focused solely on the
interactions between the humans and robot.

Our goal in observing these interactions was to understand
how participants were perceiving and making sense of the
robot. In line with Yolgormez and Thibodeau’s [2] assertion
of the valuable insights to be gained when research outcomes
are not strictly delimited, we adopted a loose, inductive study
design [15] so as to not limit the range of potential responses
or impose our own biases on participant perceptions. We
provided participants with minimal instructions and minimal
limitations on interaction options to enable the broadest
possible range of responses.



Each participant was asked to interact with the robot for
up to 5 minutes. Participants were told that the study aim was
simply to observe how people tend to respond to the robot.
They were told they could interact with the robot in any
way they wanted — including touching, lifting, speaking, etc.
— as long as they did not try to break it, and were instructed
to narrate their thought process and observations over the
course of the interaction.

Creating open-ended opportunities for participants to nar-
rate and describe rather than answer structured questions
can lead to a richer and more authentic dataset [16], [1].
Humans routinely use narrative as a meaning-making tool to
impose order, structure, and significance on life events, social
relations, and inner experience [17], [18]. Reference to emo-
tional states plays a primary explanatory role in this process,
revealing reasoning and motivation and creating cause-and-
effect links between events [19]. Prompting participants to
narrate their experiences and observations, therefore, enabled
us to map how the robot and its expressions were being
made sense of and categorized — and how these sense-
making activities evolved in response to the robot’s changing
expressions.

1) Recruitment: This study used a snowball recruitment
method [20] where the researchers/authors invited potential
participants and asked them to invite others to participate.
This process resulted in 11 final participants.

2) Observation and data collection: For validity, a mini-
mum of two out of three researchers were present during all
participant interactions and took written notes on the specific
ways in which participants interacted with and described
the robot. These notes were later cross-referenced during
first-cycle coding to identify any potential disparities. At
the beginning of each interaction, the researchers provided
participants with the instructions described above and then
refrained from adding additional context or commentary.

3) Data analysis: Observation notes were analyzed in two
coding cycles. In the first cycle, Descriptive and Process
Coding [15], [21] were performed separately on all obser-
vation notes; they were both generated inductively based on
a modified list of questions drawn from Emerson et al. [22,
p- 1771

o How do participants talk about, characterize, and un-
derstand what is going on? What assumptions are they
making? (Descriptive coding)

o What are participants doing? What are they trying to
accomplish? What specific means and/or strategies are
they using? (Process coding)

In the second coding cycle, Pattern Coding [15] was

applied to all Descriptive and Process codes to identify
overarching patterns and thematic groups.

IV. RESULTS AND DISCUSSION
A. Empathetic engagement

While some participants initially took a distanced ap-
proach to the interaction, noting features (or perceived fea-
tures) and guessing at functionality, all participants either im-
mediately or eventually took on some sense of responsibility

for the robot’s affective states. In fact, regardless of whether
they perceived the robot as a designed object or an emotional
interactant, the majority of participants were immediately
attuned to the robot’s changing expressions. Once they began
interaction with the robot through touching or moving, 8 out
of 11 participants’ first observation was about the robot’s
affective state, describing how the robot was happy, angry,
or sad, or did or didn’t like what they were doing.

In vivo coding [21] (i.e. using the the exact language
of participants) revealed 21 descriptors for affective states.
Significantly, 17 of the descriptors described the robot’s
emotional state (e.g. happy), while only 4 described the
robot’s expression (e.g. smiling). This distinction suggests
that participants were not solely engaged in expression recog-
nition. Instead, they imaginatively constructed a personality
and internal emotional states based on the robot’s expression
and responsiveness to interaction. This construction of the
robot as an object that experiences feelings served as a major
driver for most of the participants’ non-verbal interactions.
Of the 21 affective descriptors, the four most commonly
used were “happy” (15 times), “doesn’t like” (12), “likes”
(11), and “angry” (7). As the opposed terms happy/angry and
likes/doesn’t like suggest, participants’ engagement with the
robot primarily centered on identifying how to create positive
affective states and avoid negative ones.

B. Nonverbal interaction

Participants’ observations of the robot’s expressions con-
tinued over the course of the interactions. These observations
were tied to a desire to understand how their actions were
changing the expressions, with participants noting they were
“trying to figure” it out (4 participants), that they “want to
know what’s going on” (1), and that they want to know
what makes the robot change or how they can make the
robot happy (5). This investment in understanding the robot
and making it happy was reflected in the variety of tactile
interactions participants engaged in. Process coding revealed
33 separate types of actions, 27 of which were types of non-
verbal interactions with the robot. We further organized these
non-verbal interaction types into analogous groups, resulting
in four representative thematic categories, pictorially repre-
sented in Figure 3. These four categories are:

o Pushing and rolling (31 instances)

o Tapping, poking, petting (17)

« Flipping, shaking, rotating, tilting (21 instances)
« Lifting and circling in the air (8 instances)

The wide variety of interactions is representative of the
ongoing process of observation and adjustment participants
engaged in. As Pelikan et al. [8] have argued, positive affect
in robots prompts human interactants to continue performing
the same actions, while negative affect prompts interactants
to revise their actions. We found this to be true, as typical
interactions in our study consisted of participants trying out
an action while closely observing the robot’s face, noting if
a change occurred, what the change was, and adjusting their
actions accordingly.
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Fig. 3: Depictions of the four representative categories of
tactile interaction between a human and the robot, including
pushing, tapping, flipping, and lifting. These tactile interac-
tions evoked an affective response by the robot given the
expressive software.

For example, one participant immediately began touching
and moving the robot according to its changing expressions,
flipping it upside down, shaking it, driving it like a car,
setting it back down, lifting it in the air, driving it back and
forth on the table, lifting it again, having it do a “wheelie,”
then moving it side to side. Each individual action was
accompanied by an observation of what “he” (the robot) likes
or doesn’t like.

The participant was closely attentive, framing the robot’s
responses not just in terms of particular interactions, but in
terms of timing and intensity, noting for instance, that the
robot liked being driven, but only for a short amount of
time and that he liked being lifted in the air, but only to
“this height specifically.” Thus, it was clear that even when
participants were driving the robot like a toy car, the robot
was driving the interaction.

V. CONCLUSION AND FUTURE DIRECTIONS

Our qualitative analysis revealed two significant contribu-
tions:

1) Empathetic connection. Through simple affective dis-
plays, we were able to delineate a set of minimal cues
that effectively encouraged participants to invest in the
robot’s perceived emotional states.

2) Nonverbal, tactile interaction. The robot’s design ef-
fectively prompted participants to engage with it
through handling and moving, interactions that were
shaped by participant observation of the robot’s chang-
ing expressions.

Overall, these findings indicate that minimal emotional ex-
pression — even at small scales and in non-humanoid design
— can prompt empathy, attentiveness, and responsiveness in
human-robot interactions.

In future research, we plan to develop our questions about
the impact of scale and embodiment on human interaction in
two key ways. First, we will continue to test minimal design
factors by examining how different modalities such as sound
and light influence empathetic identification and interactive

responses. In addition to establishing foundational design
elements, testing these modalities will enable us to identify
whether the empathetic engagement we observed in our study
was reliant on the visual shorthand for human emotion cre-
ated by the facial expressions, or whether similar engagement
can be elicited through non-humanoid cues. Second, the scale
of our robots creates a unique opportunity to study the role
of grasping and handling in human-robot interaction, as the
size of the robot may encourage certain types of behaviors
that might be inhibited at larger scales, where social norms
may more strongly affect proxemics and handling. Future
research will reproduce the pilot study described in this paper
on a larger scale with video recordings to validate our initial
findings and to enable close examination of hand gestures
and interactions; we will continue this observation of grasps
and proxemics across studies of other design modalities as
well.

One main limitation of the current study could be the ab-
sence of other sensors such as cameras and microphones, to
expand the nonverbal interactions with humans. Participants
interacting with the robot likely displayed a myriad of facial
expressions, but the robot was unable to react to these. Also,
in its current state, although the robot could move, movement
was not coded into the study protocol, hence a cue like
proxemics was not tested as a communication channel.
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