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Abstract—Autism Spectrum Disorder (ASD) is a lifelong
neurodevelopmental condition with increasing prevalence. Its
associated challenging behaviors significantly impact social in-
teractions and daily living. Traditional assessments, which rely
on clinical evaluations oftentimes requiring long wait times, may
easily miss important behavioral episodes and timely training
or interventions. This work proposes a novel Al framework that
leverages multimodal self-supervised learning to provide at-home
monitoring and real-time analysis of interaction styles, to form
an embodied AI system that can collaborate with caregivers in
the home or clinical settings. Using a two-stage strategy, the
framework first extracts clinically meaningful representations
of a child’s interaction style and then assesses behavioral risks
with an interpretable algorithm. On-going efforts involve more
rigorous data collection, clinical collaboration, contextual analysis
of data outcomes and clinical validation of our algorithm.

Index Terms—Behavior Recognition, Self-supervised learning,
Multimodal learning

I. INTRODUCTION

UTISM Spectrum Disorder (ASD) is a lifelong neu-

rodevelopmental condition characterized by a range of
behavioral and cognitive challenges [1]]. Over recent decades,
the prevalence of ASD among children in the United States has
increased dramatically, with current estimates indicating that
approximately 1 in 36 children is diagnosed with the disorder
[2]-[5]. Among the myriad clinical features associated with
ASD, challenging behaviors (CBs)—including self-injurious
actions, aggression, and disruptive conduct—stand out due to
their profound impact on social interactions and the potential
for severe health consequences for both the affected individu-
als and those around them [6].

Despite their clinical significance, the continuous monitor-
ing of CBs in naturalistic, everyday environments remains
a formidable challenge. Traditional assessment approaches
largely depend on periodic, in-office clinical evaluations,
which not only impose substantial logistical and financial
burdens on families but also risk missing transient or sporadic
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behavioral episodes, potentially leading to diagnostic discrep-
ancies [[7]]. In light of these limitations, there is a pressing need
for an automated, unobtrusive system capable of analyzing
home video recordings to capture the nuanced interaction
styles of children with ASD, thereby enabling a more accurate
and continuous assessment of their risk for CBs.

In this work, we plan to address this challenges by develop-
ing a novel artificial intelligence framework. Recent advances
in multimodal understanding have demonstrated the potential
of Al to integrate and analyze both video and audio data
effectively [8]-[10]. However, applying such techniques to
the domain of ASD behavior analysis presents two major
obstacles. First, home video recordings are inherently noisy:
they often suffer from visual disturbances such as camera
shake and suboptimal viewing angles, as well as audio inter-
ference from environmental sounds and background activities.
Although these issues can be partially mitigated through exten-
sive pretraining on large-scale, high-quality annotated datasets,
the second challenge—data scarcity—remains significant. Due
to privacy concerns and the relative rarity of ASD, publicly
available datasets are limited in both size and diversity, re-
stricting the performance of conventional supervised learning
models [[11]]. Combined with our established socially assistive
robots for individuals with autism [12]-[15]], this proposed
research will form a collaborative care-giving support with
families of individuals with autism and clinicians.

Inspired by the recent success of multimodal self-supervised
learning models, which leverage vast amounts of unanno-
tated data to acquire robust prior knowledge [16], [17], we
proposed a multimodal self-supervised Al CBs risk assess-
ment framework. Initially, we utilize our previously developed
self-supervised behavior recognition model, AV-FOS [18] ,
to extract clinically meaningful representations of a child’s
Interaction Style (IS) as delineated in the Family Observation
Schedule (FOS). Building upon these classifications, we pro-
pose an interpretable risk assessment algorithm that computes
a weighted sum of observed ISs to yield a quantitative risk
score. Furthermore, we plan to collect additional data and
further validate our model’s clinical efficacy by examining
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the correlation between its evaluation outcomes and estab-
lished clinical assessment instruments, such as the Aberrant
Behavior Checklist (ABC) and the Behavior Problems
Inventory (BPI-01) [20]. This comprehensive framework not
only demonstrates promising performance in preliminary eval-
uations but also paves the way for improved continuous mon-
itoring and timely interventions in real-world clinical settings.

II. METHODS
A. Two Stages Learning for Interaction Styles Recognition

1) FOS Dataset: We utilize the FOS dataset, which com-
prises multimodal (audio and video) recordings of 83 children
with autism and their caregivers. The dataset includes 8,108
ten-second clips, each annotated with 23 ISs derived from the
Revised Family Observation Schedule (FOS-R-III). Annota-
tions were performed by trained professionals, achieving an
inter-rater agreement exceeding 90%.

2) Tokenization: For each ten-second clip, both visual and
audio signals are tokenized to facilitate multimodal learning.

Visual Tokenization: Three uniformly sampled frames are
averaged, resized to 224x224, normalized, and partitioned into
16x16 patches, resulting in 196 tokens with added positional
and modality embeddings.

Audio Tokenization: The raw waveform (processed at
16 kHz) is converted into a 128-dimensional log Mel-filter
bank using a 25 ms Hamming window (10 ms frame shift).
Spectrograms are standardized to 1024 frames, segmented
into 512 non-overlapping 16x16 patches, and embedded with
temporal positional cues.

Figure [I] illustrates the overall tokenization process.
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Fig. 1. Overview of the tokenization process.

3) Stage I: Self-supervised Pre-training: We adopt the
CAV-MAE framework for self-supervised pretraining.
This approach jointly optimizes a cross-modal contrastive loss:
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and a reconstruction loss:
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This dual-objective formulation yields robust cross-modal rep-
resentations. Figure [2] shows the pretrained structure.

Reconstruction Loss

Cn

Audio Encoder

[ Audio patches ]
!
!

5-BEBE

Mask
Joint Encoder

SSO PAlISENUOY
Joint Decoder

ek

-BEEE

E\/
:
Cu

[ Video Patches ]

Fig. 2. The CAV-MAE self-supervised learning pretrained structure.

4) Stage II: Supervised Training for IS Classification:
After pretraining, we fix the Audio Encoder, Video Encoder,
and Joint Encoder as feature extractors. Given the modality-
specific token sequences t, and t,,, the Joint Encoder E; fuses
the features:

Z = B, ([Ea(ta). Bu(t.)]).

We then apply token-level mean pooling:

1 X
=72 2
t=1
and feed h into an MLP classifier with a sigmoid activation

to generate the final class probability predictions. The overall
structure is depicted in Figure [3]
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Fig. 3. The AV-FOS self-supervised learning structure.

B. Challenge Behavior Risk Assessment

Upon predicting the interaction styles (IS) from video data,
we can subsequently evaluate the risk of challenge behaviors
based on these predictions. In the risk evaluation phase, each
IS observed in the video is assigned a weight that reflects its
empirically and theoretically supported influence on challenge
behavior. The overall risk score R is then computed as a
weighted sum of the frequencies of the observed IS:

R= Z Frequency, x Weight,,

i=1



where n represents the total number of interaction styles.
A higher risk score is indicative of an increased likelihood
of challenge behaviors, whereas a lower score suggests a
mitigated risk.

The integration of weighted interaction style features into
the risk assessment framework provides a robust methodology
for predicting challenge behaviors in autistic children based
on observed interaction patterns.

C. Clinical Validation and Contextual Analysis of Data Out-
comes

To assess the clinical validity of our Al-based risk evaluation
algorithm, we propose a study that investigates the correlation
between the algorithm-generated risk scores and established
clinical assessment tools. In particular, we focus on the Aber-
rant Behavior Checklist (ABC) and the Behavior Problems
Inventory (BPI-01), both of which are widely recognized for
their clinical interpretability in evaluating challenging behav-
iors in children with ASD. The ABC is a caregiver-completed
questionnaire that typically yields a total score ranging up to
a maximum value (e.g., 174 for the full-scale score), with
higher scores indicating a greater propensity for challenging
behaviors. Similarly, the BPI-01, which assesses self-injurious,
stereotyped, and aggressive behaviors, produces higher scores
when the severity of behavioral problems increases.

For the clinical validation, we plan to collect data from a
substantial cohort of ASD children. For each participant, our
algorithm will generate a risk score, denoted as R, based
on the analysis of multimodal interaction data. Concurrently,
caregivers will complete both the ABC and the BPI-01 ques-
tionnaires, yielding clinical scores that serve as ground truth
indicators of behavioral risk. For each subject, we thus obtain
a paired score (Rar,Y'), where R represents the risk score
computed from our algorithm, and Y represents the clinical
assessment score, which is derived from either Rapc or Rgpr.

To rigorously evaluate the relationship between Ra; and
the clinical assessment scores, we will compute the Pearson
correlation coefficient p defined as:
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where NN is the number of subjects, Ry is the mean of the
Al risk scores, and Y is the mean of the clinical scores, with
Y coming from either Rapc or Rppr. A statistically significant
and strong positive correlation (i.e., p close to 1) would
indicate that higher risk scores predicted by our algorithm
are associated with higher clinical ratings of challenging
behaviors, thereby supporting the clinical applicability of our
approach.

This methodology not only validates the predictive perfor-
mance of the proposed algorithm in a clinical context but
also facilitates a deeper contextual analysis of data outcomes,
reinforcing the interpretability and robustness of our risk
assessment framework.
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III. INITIAL RESULTS

At the current stage, we have successfully completed the
training of the AV-FOS model, which exhibits remarkable
performance in recognizing interaction styles (IS). To evaluate
its effectiveness, we benchmarked the AV-FOS model against
state-of-the-art video understanding architectures, namely the
SlowFast Network and the Vision Transformer, as well as
against GPT4V with prompt. Table [[] and Fig. f] summarize
the comparative performance.

TABLE I
AV-FOS PERFORMANCE ON THE FOS DATASET.

Model mAP 1 Accuracy T Strict Accuracy T AUC t  Fl Score T Time Cost —
GPT4V + Prompt VI 03181 0.7965 0.1355 06624 04581 4.3349
GPT4V + Prompt V2 0.2481 0.7668 0.1468 05896  0.3330 3.9792
SlowFast 06138 0.8287 0.1125 08445  0.5437 0.0031
ViT 06167 08172 0.0889 0.8486  0.5448 0.0011

AV-FOS Model 0.6879 0.8590 0.2003 0.8868 0.5936 0.0027

Our AV-FOS model demonstrates exceptional capabilities,
outperforming the competing models in key metrics such
as mean Average Precision (mAP), accuracy, Area Under
the Curve (AUC), and F1 Score. These results highlight the
robustness and predictive accuracy of the AV-FOS approach
in capturing and utilizing IS features for effective challenge
behavior risk assessment.
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Fig. 4. Performance and time cost comparison among evaluated models.

At the same time, we conducted a preliminary exploration of
the impact of IS on the CB risk. Table [[I] presents our analysis
of the influence of each Interaction Style on the final CB risk,
along with their corresponding weights.

IV. CONCLUSION AND FUTURE WORK

In this work, we introduced a novel multimodal self-
supervised Al framework for the continuous assessment of
challenging behavior risk in children with ASD. Our approach
leverages a two-stage strategy, where the first stage employs
a self-supervised behavior recognition model (AV-FOS) to
extract clinically meaningful representations of a child’s in-
teraction style, and the second stage applies an interpretable
risk assessment algorithm that computes a weighted sum of
observed interaction styles to yield a quantitative risk score.
Preliminary evaluations demonstrate promising performance,




TABLE 11

SUGGESTED WEIGHTS FOR INTERACTION STYLES IN PREDICTING THE RISK OF CHALLENGE BEHAVIORS AMONG AUTISTIC CHILDREN

Demand-based interactions may induce stress responses and cognitive overload, thereby
potentially eliciting challenge behaviors.

Appropriate verbal interactions provide emotional support and structured guidance,
effectively mitigating the risk of emotional dysregulation.

Peer affection fosters emotional regulation and a sense of security, thereby reducing the
propensity for challenge behaviors.

Parental affection reinforces secure attachment bonds, thus decreasing negative affect
and resistance behaviors.

Positive physical contact, such as hugging or gentle touch, has been shown to
significantly lower anxiety levels and enhance emotional stability.

Negative physical contact can result in discomfort and increased stress, thereby
heightening the likelihood of challenge behaviors.

The expression of complaints may indicate underlying distress and communication
difficulties, which could elevate behavioral risks.

Engagement in play activities distracts from negative affect and promotes self-regulation,
substantially lowering the risk of challenge behaviors.

Interruptions by children may reflect impulsivity; however, they can also indicate active
engagement, hence a modest increase in risk.

Parental interruptions may disrupt interactional continuity, slightly increasing risk by
limiting opportunities for emotional expression.

The provision of multiple instructions may lead to cognitive overload, inducing
confusion and subsequent resistance behaviors.

Non-compliant behaviors are directly associated with challenge behaviors, reflecting
significant difficulties in emotional regulation.

Oppositional behaviors serve as key indicators of escalating conflict and emotional
dysregulation, thus predicting challenge behaviors.

Praise positively reinforces adaptive behaviors, enhancing self-confidence and thereby
reducing the likelihood of behavioral challenges.

Negative physical interactions, such as hitting or pushing, directly trigger adverse
emotional responses, markedly increasing risk.

Positive questioning promotes engagement and reflection, which helps to reduce
misunderstandings and emotional tension.

Negative questioning may evoke defensive responses, thereby exacerbating oppositional

Positive social attention engenders feelings of acceptance and understanding, substan-
tially stabilizing emotional responses.
Negative social attention may intensify self-doubt and trigger adverse behavioral

Clear, positively framed instructions facilitate comprehension and task engagement,
albeit with a moderate effect.

Negative specific instructions can evoke feelings of rejection and undue pressure, leading
to behavioral dysregulation.

Although vague, positively-toned instructions still offer limited emotional support,
resulting in a minor protective effect.

IS Code IS Name Weight Rationale
AD Adhesive Demand +0.4
AV Appropriate Verbal -0.6
Interactions

Aff_child Children Affection -0.8
Aff_parent Parent Affection -0.7
C+ Positive Contact -1.0
C- Negative Contact +1.0
CP Complaint +0.6
EA Engaged Activity of Play -1.0
Int_child Children Interrupt +0.2
Int_parent Parent Interrupt +0.3
MI Multiple Instructions +0.4
NC Non-compliance +0.8

(6] Opposition +0.9

P Praise -0.7

PN Physical Negative +1.0
Q+ Positive Question -0.4
Q- Negative Question +0.5

attitudes.
S+ Positive Social Attention -1.0
S- Negative Social Attention +0.5 '
reactions.

SI+ Positive Specific Instruction -0.3
SI- Negative Specific Instruction +0.6
VI+ Positive Vague Instruction -0.2
VI- Negative Vague Instruction +0.4

Ambiguous and negatively framed instructions may create confusion and cognitive
strain, moderately increasing risk.

highlighting the framework’s potential for effective at-home
monitoring and timely intervention.

Moving forward, our future work will focus on several
key directions. First, we plan to augment our dataset with
additional high-quality recordings to address the inherent data
scarcity and improve model generalizability. Second, we will
conduct rigorous clinical validation by correlating our Al-
generated risk scores with established clinical assessment
instruments, such as the ABC and the BPI-01. This validation
will assess the clinical efficacy of our model. Third, we also
plan to refine the framework by integrating more comprehen-
sive contextual analysis and exploring potential extensions to

accommodate a broader spectrum of behavioral phenotypes,
thereby further bridging the gap between Al-driven analysis
and clinical practice. Lastly, we will realize this framework
through our social robotic platforms to form a closed-loop
embodied Al system to provide timely and in-sifu support in
home or clinical settings.
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