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Legged Robot Agility Guided by Human Gesture
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(a) Data Collection

(b) Control Command with Gesture

Fig. 1: (a) Illustration of the data collection procedure. The person on the left, wearing a motion capture suit, makes a gesture
command to the robot, while the person on the right uses a teaching rod to guide the dog in performing the desired movement.
(b) In the inference stage, the training rod is no longer needed, and only the person in the motion capture suit controls the

robot using gestures.

Abstract—This work introduces an approach for guiding
agile-legged robots through cluttered environments and complex
obstacle courses using human body gestures. Qur framework,
Interactive Robot Parkour, enables robots to interpret human
gestures as high-level commands and execute precise, responsive
movements in real-time. At the core of our method is the
use of real-world interaction data between humans and robots.
This data is used to learn a mapping between gestures and
desirable navigation paths within reconstructed scenes. The scene
reconstruction, built in a digital twin fashion, facilitates data-
efficient learning and effective adaptation to new environments.
We validate our approach through simulated and real-world
parkour tasks, demonstrating that robots can reliably respond to
human intentions with minimal engineering effort to teach new
gesture commands. Video footage of our preliminary results is
available at https://youtu.be/F62xzzdsljc.

I. INTRODUCTION

As legged robots become more integrated into our daily
lives, their ability to understand and collaborate with humans
is gaining increasing attention across a wide range of real-
world applications [1]. Typically, these robots are controlled
by users using input devices such as joysticks or keyboards,
which define the target velocity in the desired moving direc-
tion. However, relying on such input devices is not always
practical, as they demand continuous attention and precise
control [2]. For example, industrial workers wearing thick
protective gloves may find manipulating input devices difficult
or even impossible.
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To seek an alternative, we turn to human-animal cooperation
in agile navigation. Animals possess the ability to understand
social cues and execute fine, agile movements, while humans
can communicate high-level commands through various forms
of non-verbal interaction. Among these, body gestures stand
out as a particularly effective means of guiding legged animals.
A noticeable example is the dog agility competition, where a
human trainer and a dog work as a coordinated team—the
trainer uses gestures to indicate which obstacles to overcome
and how to navigate the course. In such scenarios, a verbal
command like “Go there” to a robot can be ambiguous, often
requiring additional context to clarify the intended target.
In contrast, a simple gesture can directly and intuitively
express spatial intent, making communication more efficient
and natural by providing clear visual cues about direction and
goal location.

Inspired by this animal ability, we aim to facilitate human-
robot cooperation, where human gestures serve as high-level
commands, and the robot responds with appropriate move-
ments when faced with obstacles, as shown in Figure 1b.
To this end, we propose the Interactive Robot Parkour (IRP),
which leverages human gesture data paired with ground-truth
human intentions represented as goal points. While real-world
data collection enables operators to interact with the robot in
a more natural and realistic manner, we further enhance the
dataset through digital-twin scene reconstruction, as shown
in Figure 3. This augmentation allows the robot agent to
learn more precise movements and adapt effectively to new
scenarios.

We demonstrate our method across several representative
robot navigation scenarios, supported by empirical analysis
showing that the proposed data augmentation approach helps
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Fig. 2: Overview of interactive robot parkour

the robot agent better recognize obstacles, follow the correct
sequence, and successfully achieve the task goal. For example,
in the Zigzag through tires task, our method outperforms
alternative approaches by achieving a higher success rate,
successfully navigating through multiple tires without making
contact with any of them.

In summary, key contributions of this work are as follows:

« We present Interactive Robot Parkour (IRP), a novel
approach for gesture-based control of legged robots nav-
igating cluttered environments.

« We propose a data augmentation method that involves
reconstructing interaction scenes in simulation from real-
world data to enhance learning efficiency and improve
the adaptability of trained models.

o We present evaluation protocols and baselines showing
improved performance in gesture-driven agility tasks re-
quiring precise spatial understanding.

II. OVERVIEW

Consider a quadruped robot whose base position and orien-
tation are denoted as py € R? and h € H, respectively, with H
indicating the space of unit quaternions. We define the robot’s
linear and angular velocities, along with the joint velocity, are
represented as v € R®, w € R?, and § € RM | respectively. The
generalized coordinate of the robot is defined as q = [py, h, €]
and its time derivative as q = [v, w, 0]. Following this the state
of the robot is defined as x = [q, ¢]”. Additionally, we define
the human gesture as m consisting of six keypoint positions
at the shoulders, elbows, and wrists on both the left and right
sides. Furthermore, we define o to represent obstacles, which
can be either a box or a cylinder. The representation o includes
position p, and quaternion h,. For a box, o also includes
dimensions (/*,”,1%), while for a cylinder, it includes radius
r and height /%.

Our goal is to interpret human intentions through gestures
m and control the robot accordingly based on its states x and
surroundings obstacles 0. To achieve this, we develop a system
that involves collecting interaction data between humans and
the robot, as well as training methodologies.

As illustrated in Figure 1, IRP consists of three sequential
stages. First, we train a low-level controller using Reinforce-

ment Learning (RL) to navigate through obstacles. Next, we
introduce a teaching rod as a physical guide, which the robot
follows to facilitate interaction. We collect data on human
interactions using both the teaching rod and gestures while
the robot operates under the position controller, as shown
in Figure la. Finally, we train a gesture inference module
to control the robot using gestures without the teaching rod,
as demonstrated in Figure 1b. Details of these three stages
will be provided in Section III, Section IV, and Section V,
respectively.

III. POSITIONAL CONTROLLER

The goal of the positional controller is to control the robot
so that it can navigate to the target position while overcoming
obstacles. As illustrated in Figure 2, it consists of a velocity
generator and controller. A velocity generator outputs the
heading velocity command veo, = |g*Y — p*Y|2 and the
orientation command ¢.o, = yaw(R” (g — p)), where p and
g denote the robot’s base and target positions, respectively,
and (-)*” indicates ground-projected points. In essence, the
velocity generator functions as a proportional mechanism,
guiding the robot toward the target position using the velocity
controller.

The velocity controller is developed based on the work of
Cheng et al. [3] and is designed to follow velocity-level com-
mands veom € [—1.0, 1.0] m/s and angular velocity commands
Weom € [—7/3, /3] rad/s while navigating through obstacles.
We train this controller using Isaac Gym [4], leveraging high-
speed simulation for efficient learning with GPU (RTX-3090).
The RL policy utilizes a scandot representation of obstacles,
which is acquired in the real world via motion capture cam-
eras (OptiTrack Prime X22), ensuring precise environmental
perception.

The velocity controller must be robust when overcoming the
obstacles, as its failure would compromise the entire system. In
this regard, we make two key modifications in policy learning
and system design to enhance tracking performance. Firstly,
we introduced a stand boolean in the state representation.
When the given velocity command v is below the threshold
vin = 0.1m/s, the stand boolean is set to 1; otherwise, it
is set to 0. This explicit signal demonstrated an improved
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Fig. 3: Illustration of data collection procedures for five interaction scenarios. (a) Pointing and (b) Come here depict human-
robot interactions in open space. (c) Come around the box and (d) Jump over this box illustrate interactions involving a box
obstacle. (e) Zigzag through tires demonstrates interaction with multiple tire obstacles. (f) These scenes are reconstructed in

simulation to augment data for efficient training.

transition from walking to standing and vice versa. Secondly,
we employed a Kalman filter-based state estimator [5] that
fuses data from joint encoders, foot contact sensors, and global
position measurements obtained from motion capture cameras.
This state estimator reliably provides state values for the
control policy and enables data collection in the global frame,
allowing full-scene reconstruction in simulation.

IV. COLLECTING INTERACTION DATA

Our data collection approach is inspired by a dog training
technique called luring, which uses a treat to guide the dog
toward a desired behavior. For example, a trainer may lure a
dog to a specific location with a snack while simultaneously
making a pointing gesture. Over time, the dog learns to
associate the gesture with the intended action and can perform
the behavior without needing the treat as a prompt. Similarly,
we employ a teaching rod to guide the robot, mimicking the
role of the treat in luring. The robot follows the rod using
a position controller from Section III, gradually learning the
meaning of the gestures so it can eventually respond without
requiring the rod.

Specifically, our goal is to collect interaction data, denoted
as D, comprising human gestures m, robot states x, obstacle
representations o, and target goals g, recorded at a frequency
of 10Hz. As shown in Figure 3, we define five interaction
scenarios between humans and the robot: Go there, Come
here, Jump over this box, Come around the box, and Zigzag
through tires. Two humans involved in this data collection
follow these scenarios, where they adjust more fine behaviors
on the spot through active verbal communication. Among the
scenarios, Pointing is one of the simplest gesture commands.
The commander points to a location, directing the robot to
move there. In Following, the commander raises either their
left or right hand. If the left hand is raised, the robot moves

to the left side of the commander; if the right hand is raised,
it moves to the right side. In the Come here scenario, the
commander waves their hands toward themselves, signaling
the robot to approach. For scenarios involving obstacles, Jump
over this box requires the commander to wave their hand over
their head, instructing the robot to jump over the box. In Come
around the box, the commander waves their hand around the
box, guiding the robot to detour around it rather than jumping
over. Lastly, in Zigzag through tires, the commander waves
their hand left and right, signaling the robot to weave through
the tires in a zigzag pattern. In particular, this data contains
sufficient information to fully reconstruct the interaction scene
in simulation, as shown in Figure 3f.

V. TRAINING GESTURE MODULE

Our goal is to leverage collected interaction data to train
a gesture module that maps human gesture commands to
corresponding target goals. By training this module, the robot
becomes capable of interpreting gestures and performing de-
sired tasks autonomously, eliminating the need for a teaching
rod, as illustrated in Figure 1b.

Training the gesture module presents several challenges.
Primarily, data efficiency is a significant concern since our
data is gathered directly from real-world interactions, in-
herently restricting the available amount. Standard imitation
approaches, such as Behavior Cloning [6], train the gesture
module according to an expert’s distribution. This approach,
however, is prone to error accumulation, leading to significant
misbehavior when the robot encounters states not covered by
the training data, which can be referred to as drifting. In this
case, the robot may completely disregard human gestures and
start wandering aimlessly, or it might attempt unnecessary
maneuvers, such as jumping over obstacles like boxes or tires,
when it should avoid doing so.
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Fig. 4: Illustrations of the interactive parkour model deployed in the real world. Human gestures control the robot in real-time,
enabling the robot to navigate through obstacles according to the operator’s intentions.

Method Baseline (m) Ours (m)
Point 2.7774 2.3170
Come here 0.9176 1.0101
Zigzag tires 7.1376 1.2915
Jump box 9.4244 5.0746
Come around 4.9384 3.2200

TABLE I: Comparison of baseline and proposed method based
on positional error using ground-truth interaction data. Lower
values indicate better performance.

To address these issues, our approach introduces data
augmentation through simulation-based scene reconstruction.
Specifically, we reconstruct interaction scenarios in a simu-
lated global frame, incorporating obstacles and human gestures
using timestamped real-world interaction data. Within these
simulations, we intentionally provoke the drifting behavior
of the gesture module by deploying it alongside a low-level
controller. When the simulated agent inevitably begins to
drift, we generate augmented target positions by computing
the offset between the ground-truth goal position g and the
current simulated position of the drifting agent p,. Formally,
the augmented data point is calculated as gy — pr. This
augmentation technique shares similarities with DAgger [7],
as it effectively trains the gesture module to recognize and
recover from drifted states, thereby enhancing robustness and
generalization in real-world scenarios.

Another challenge is ensuring precise robot movements rel-
ative to obstacles. For instance, when jumping over a box, the
robot must approach it perpendicularly to the edges to achieve
stable navigation. Similarly, when zigzagging through tires, the
robot should pass between them without making contact. We
mitigate this issue by decoupling the timing of the simulated
human gestures and target goals from the simulation clock.
Specifically, the next gesture and its corresponding target goal
appear only after the robot reaches the current target, which we
refer to as conditional framing. In contrast, a baseline approach
with synchronized simulation and data timelines results in
rapidly changing goals before the robot can reach them. This
can potentially cause the robot to mistakenly jump over the
tires due to improper data augmentation. By implementing our
timing strategy, the robot demonstrates refined and accurate
navigation through obstacles.

VI. PRELIMINARY RESULTS

We evaluate the performance of the gesture module by
comparing the ground truth base positions from our interac-

tion dataset against the simulated robot positions. In detail,
we deploy the robot in the reconstructed scenes from the
interaction data for 60s, where the gesture commands are
also derived from the interaction data. On the one hand, the
baseline method is Behavior Cloning (BC) [6], which utilizes
supervised learning to train the gesture module. On the other
hand, our proposed method adopts data augmentation through
scene reconstruction across all scenarios. Additionally, we
apply the conditional framing technique from Section V for
scenarios involving obstacles.

We evaluate the position error using the L1 distance. Specif-
ically, we simulate the robot while providing human gestures
based on prerecorded data. We then measure the positional
difference between the robot in the simulator and the ground-
truth base position using the collected data. As the results
shown in Table I, the proposed method demonstrates improved
performance overall. Particularly, the proposed method excels
in scenarios involving obstacles with an average improvement
of 3.97 m, while also showing comparable results for scenarios
without obstacles with an average improvement of 0.18 m.

We also showcase the interactive parkour deployed in the
real world '. As illustrated in Figure 4, the deployed robot
can follow gesture commands from a human operator. For
pointing gestures, the robot moves directly toward the indi-
cated area, as shown in Figure 4a. If the operator swings
their arms toward themselves, the robot approaches gently,
as depicted in Figure 4b. An outward swing from the box
prompts it to circumnavigate the obstacle before approaching,
as demonstrated in Figure 4c. A swing of the arms over the
head directs the robot to the middle of the box to execute a
jump, as shown in Figure 4d.

VII. FUTURE WORK

Our framework enables robots to interpret human gestures
and perform agile movements, supporting intuitive human-
robot interaction. It also allows the evaluation of positional
errors accumulated by the deployed agent, providing a founda-
tion for benchmarking collaboration. Since the collected data is
sufficient for full scene reconstruction, it holds strong potential
for broader quantitative analysis. However, our current evalua-
tion methods do not fully leverage this. In future work, we plan
to develop more systematic metrics to better assess human-
robot collaboration and contribute to standardized benchmarks.

1Video footage is available at https://youtu.be/ F62xzzdsljc
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