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Abstract— In the realm of Human-Robot Interaction (HRI),
enabling robots to navigate crowded indoor spaces remains a
significant challenge. While existing methods like Walk2Map
show promise, they often rely on intrusive equipment, limiting
their practicality in dynamic social settings. Our research takes
a novel approach by analyzing human-environment interactions
from a third-person perspective, eliminating the need for
wearable sensors. By studying the interplay between pedestrians
and static objects, we aim to develop a more intuitive system for
robots to understand and navigate human-centric spaces. This
method enhances robots’ ability to respect human movement
patterns and social dynamics and promotes seamless integration
into crowded environments. We aim to advance socially aware
robot navigation, improving human-robot coexistence and col-
laboration in various public spaces.

I. INTRODUCTION

Traversability prediction through visual recognition of
navigable areas on a 2D floor remains a fundamental chal-
lenge in robot navigation. While region-wise traversability
prediction techniques [1]–[13] have been extensively studied
for outdoor environments such as woods and streets, they
face significant limitations in crowded, occlusion-prone in-
door spaces like offices or classrooms, where human traffic
and dynamic obstacles are prevalent. Recent studies have be-
gun to address this gap by focusing on indoor environments.
Kucner et al. [14] constructed maps of dynamics (MoDs)
using laser range finders to encode semantic information on
motion patterns. Alempijevic et al. [15] leveraged human
interactions to map human motion dynamics, identifying ar-
eas of changing traversability. Papadakis et al. [16] proposed
a generative methodology for indoor robot navigation that
incorporated human spatial activity for passage detection
and occupancy prediction, while mitigating false positives
using prior map information. However, these approaches are
primarily effective in scenarios with minimal obstacles and
occlusions, leaving the challenges posed by typical office
environments largely unaddressed.

In the realm of architectural design and map creation, a
novel data-driven method called Walk2Map [17] has recently
gained attention. This approach, which utilizes a first-person
IMU to generate traversability maps, offers a simple yet
powerful means of creating floor plans based solely on
indoor pedestrian trajectories. Inspired by advancements in
affordable, high-performance equipment such as smartphone
IMUs and data-driven inertial odometry, Walk2Map produces

Our work has been supported in part by JSPS KAKENHI Grant-in-Aid
for Scientific Research (C) 20K12008 and 23K11270.

∗J. T. Y. Liang and K. Tanaka are with Fundamental Engineering for
Knowledge-Based Society, Graduate School of Engineering, University of
Fukui, Japan. {mf228029@g., tnkknj@}u-fukui.ac.jp

Fig. 1. Traversability prediction under severe occlusion. Left: Conven-
tional first-person-view setup with IMU. Right: Proposed third-person-view
monocular vision setup.

floor plans of exceptional quality that exhibit ideal character-
istics for use as traversability maps [18] in mobile robotics.
However, the method’s application in autonomous mobile
robot navigation is severely limited by the need to equip
pedestrians with odometers, as illustrated in Figure 1.

Inspired by the remarkable outcomes observed, we pro-
pose Walk2Map++, an expansion of Walk2Map that incorpo-
rates vision-based methodologies to enhance Human-Robot
Interaction (HRI) in indoor environments. While implement-
ing a third-person robot vision setup presents a notable
challenge due to its inherently ambiguous nature compared to
first-person IMU setups, we anticipate that recent advance-
ments in deep learning-aided third-person human behavior
analysis techniques [19] are sufficiently mature to provide
effective visual measurements for improved robot-human
coexistence. Diverging from the conventional approach of
eliminating dynamic information from the scene, we propose
leveraging these dynamic cues to enhance our exploration
of traversable regions, allowing robots to navigate more
naturally in human-populated spaces. We demonstrate that
by delving deeper into the intricate physical and photometric
interactions between humans and obstacles, we can derive
enhanced cues that facilitate the reconstruction of pedestrian
trajectories, leading to more socially aware robot navigation.
To address the ill-posed nature of the problem and improve
HRI, we propose leveraging photometric and physical cues,
specifically focusing on human-object occlusion reasoning
and collision avoidance. These cues are inferred from past
and present observations, aided by object reconstruction and
human tracking techniques, ultimately enabling robots to
better understand and respond to human behavior in shared
spaces.

This paper presents several key contributions to enhance



Human-Robot Interaction (HRI) through improved robot
navigation in shared spaces: (i) We introduce Walk2Map++,
an innovative approach that transforms Walk2Map’s first-
person IMU sensor into a third-person view from a robot’s
onboard camera, allowing for more natural and unobtrusive
observation of human behavior. (ii) We establish dynamic
relationships and physical cues between moving humans
and stationary objects using SLAM and human detectors,
enabling a deeper understanding of human-environment
interactions. (iii) We present a novel third-person view
traversability estimation approach that combines SLAM and
human detection methods, replacing the first-person view
IMU method and allowing robots to interpret human move-
ment patterns for more socially aware navigation. (iv) We
evaluate our method’s effectiveness through a performance
index for traversability maps, validated via fusion and com-
parison with well-known methods in comprehensive real-
world experiments, demonstrating its potential for improved
robot navigation in human-centric environments. (v) To
foster further research and adoption in HRI, we will make
the code and datasets associated with this study publicly
available upon acceptance. These contributions collectively
aim to significantly enhance robots’ ability to understand,
predict, and adapt to human behavior in shared spaces, ulti-
mately leading to more harmonious human-robot coexistence
in various indoor environments.

II. RELATED WORKS

A. Traversability Prediction

Traversability prediction, a prominent field of computer
vision research, has undergone notable advancements within
the supervised learning paradigm [18]. Recent methodologies
exhibit the evolving landscape of this field, expanding its
scope from outdoor terrains to intricate indoor environments.
Researchers have explored the effectiveness of generating
control commands based on onboard sensor data, demon-
strating efficacy in predicting traversable regions within
complex indoor spaces [20]. A noteworthy trend involves the
exploration of self-supervised frameworks for autonomous
robot applications, addressing challenges such as long-range
traversability [21], RGB-D traversability prediction [22], vis-
ibility challenging environments [23], and hazardous forest
scenarios [24]. In addition to supervised learning, emerg-
ing semi-supervised [25] and unsupervised [26] frameworks
which leverage scene geometry, appearance, and range-color
information, show promise. However, these existing methods
do not assume crowded or occlusion-rich environments and
do not provide effective clues to the floor area in challenging
environments. In contrast, our approach allows the emphasis
on predicting traversable areas within occluded regions,
a critical aspect for navigating challenging terrains with
restricted visibility, marking a significant stride toward the
development of autonomous robot systems adept at handling
complex environments.

B. Human Moving Trails Observation

In addressing the enduring challenge of scene arrangement
recovery under moderate to heavy occlusion in monocular
video analysis, Monszpart et. al. introduce iMapper [27],
a data-driven method that uniquely leverages the corre-
lation between human-object interactions and scene-object
arrangements. By identifying characteristic interactions and
employing an occlusion-aware matching procedure, iMapper
yields substantial advancements in both scene analysis and
3D human pose recovery, particularly in scenarios with
medium to heavy occlusion, as demonstrated through rig-
orous quantitative and qualitative evaluations. The idea of
creating maps from human observations in a fixed camera or
non-occluded setup is not new [28]. Our main difference
is that we use a moving camera and assume a crowded
environment with rich occlusions and obstacles.

On the other hand, Walk2Map [17] is a data-driven ap-
proach for constructing floor plans solely from the trajecto-
ries of people walking indoors. It leverages the movements
of individuals equipped with ego-motion sensors, such as
IMU (Inertial Measurement Unit) measurements on smart-
phones, to generate high-quality floor plans. We observe that
these floor plans are of good quality and could be used as
traversability maps for indoor robot navigation. However,
Walk2Map assumes that a first-person sensor such as an
IMU will be attached to a human, and is not intended for
use in autonomous mobile robots. In contrast, in this study,
we wish to achieve the same functionality (Walk2Map++) by
not relying on that premise and using the robot’s third-person
camera as the sole sensing device.

III. APPROACH

We present an overview of our approach in Figure 2,
which shows the proposed Walk2Map++ approach and the
whole framework. Walk2Map++ takes image sequences as
input and outputs a traversability map (Section III-A).
Walk2Map++ aims to realize the functionality of Walk2Map
using a third-person robot view instead of a first-person
view human equipped with an IMU sensor, generating a
traversability map in grid map format solely from the tra-
jectories of people walking indoors, as shown in Figure 1.
This module restricts human locations by analyzing human
behavior and makes the traversability map as accurate as
possible (Section III-B). However, this base method alone
may not provide sufficient performance under crowded and
occlusion situations. Two more modules will be introduced
for augmentation. Primarily, by leveraging the physical cue
(PHYS) of humans avoiding collisions with obstacles, we
constrain human behavior towards incremental obstacle maps
to enhance the accuracy of the traversability map (Section III-
C). Secondly, based on the occlusion reasoning between hu-
mans and obstacles, a photometric cue (PHOT) is introduced
to constrain the depth ordering of humans and obstacles from
the camera’s viewpoint to further enhance the accuracy of the
traversability map (Section III-D). Additionally, incremental
map updates are supported for asynchronous map optimiza-



Fig. 2. Block diagram of framework: All modules are interconnected via ROS (Robot Operating System). The PHYS module comprises DSO (Direct
Sparse Odometry) and is responsible for generating point clouds utilized by other modules. Within the PHOT module, a Human-Object Occlusion Ordering
Algorithm is employed to extract occlusion ordering information, which is then combined with point cloud coordinates derived from Detectron2 human
masks. Additionally, the Walk2Map++ module utilizes human pose estimation to predict human distance from the camera and estimate traversable regions.
These traversability maps are visualized using the rviz visualizer. The red box represents the estimated human location in the traversability map image,
hence the traversable region. The grey path indicates the traversable region, in which the human has walked. The grey path is imprinted by the red boxes.

Fig. 3. Top-left: The projection of point clouds to the keyframes visualize;
Top-right: Human mask used for occlusion ordering algorithm; Bottom-left:
DSO; Bottom-right: Detectron2 Semantic Segmentation

tion during loop closing (Section III-E). Figure 3 shows the
different modules of our framework.

A. Traversability Map

The traversability map constitutes a vital component
within the framework of the robotic system, manifesting
as a two-dimensional grid overlaying the mobile plane of
the robot. The grid cell adheres to a spatial resolution
of 10 cm × 10 cm, meticulously structured to facilitate
precise navigation. Through extensive analysis, it has been
determined that the adoption of a finer cell granularity yields
only marginal enhancements in performance, while signifi-
cantly amplifying both computational overheads and storage

requisites. Each cell within the grid is endowed with the
capacity to assume one of three distinct states: “traversable”
- navigable terrain; “untraversable” - impassable regions; and
“unknown” - areas yet to be surveyed or categorized. In the
initialization phase, all grid cells uniformly commence with
an initial state of “unknown,” awaiting subsequent evaluation
and classification.

B. Walk2Map++

To estimate the human distance from the camera, deep
learning, and semantic segmentation methods are typically
used. In [29], the proposed pipeline utilizes MobileNetV1
[30] as the backbone network, together with Atrous Spatial
Pyramid Pooling (ASPP) [31] to construct the encoder.
Despite its strong performance, the method faces challenges
when dealing with variations in in-depth data across different
parts of the human body, especially in scenarios where parts
of the body are occluded, such as when handling large
objects like boxes or furniture. To address this, we propose
leveraging the entire body of the pedestrian, considering
the co-occurrence of the head, arms, torso, and legs to
reduce detection errors. Specifically, we employ a human
pose estimator to identify the key points of the human torso
and then use a pinhole camera model to infer the human’s
distance from the camera.



Fig. 4. (Left, Middle): Human-centric coordinate system. As shown in the
middle figure, keypoint 1 and keypoint 8 is used as a reference point of
torso length.(Right): The relationship between occluder’s feature point and
occluded human’s region.

To distinguish between pedestrians and non-pedestrians,
we use the pedestrian’s entire body as an error detection
code. On the other hand, building upon prior research on
pedestrian posture analysis, it has been observed that the
length of a pedestrian’s torso remains relatively constant dur-
ing walking, providing valuable insight for position analysis.

D = k · f · L
∥P1 − P2∥

(1)

Specifically, the measured torso length is denoted as L and
the distance from the camera to the human torso is denoted
as D. f is the focal length of the camera and ∥P1 − P2∥
represents the Euclidean distance between the two torso
keypoints. The relationship is established through Equation
1, where Euclidean distance calculation is employed. In this
study, we utilize the state-of-the-art human pose estimation
model - OpenPose [32], for this purpose.

Before model implementation, parameter calibration is
essential, with a focus on determining the key parameter
k in Equation 1. Utilizing two keypoints from human pose
estimation, such as those illustrated in Figure 4, allows for
the inference of torso length in pixel units. However, it’s
important to note that the 3D coordinates do not directly
translate to physical distances in meters, necessitating the
application of a scale factor. Additionally, accurate measure-
ments based on known distances or sizes of objects within
the scene are essential for the precise determination of D.

This torso-keypoint-based method demonstrates robust-
ness compared to alternative approaches, as it does not
require pedestrians to consistently face the camera for key
points acquisition. Instead, keypoints data can be obtained as
long as the pedestrian is within the camera’s view. Therefore,
the algorithm is deemed valid at all angles of observation.

C. Physical Cues (PHYS)

Previous algorithms like UnionDet [33] and PPDM [34]
use parallel HOI (Human-Object Interaction) detectors based
on interaction or union boxes, often requiring heuristic
thresholding for post-processing. In this study, we integrate
PHYS and PHOT to efficiently establish human-object rela-
tionships. By continuously updating point cloud coordinates
and human location data, our approach provides real-time

Fig. 5. Vision-based traversability prediction is an open problem in crowded
office environments where occlusions and obstacles are rich. In a crowded
dynamic scene, it is difficult to obtain a good point cloud map and human
detection due to occlusions and obstacles. The left and right panels show the
DSO point cloud map and Detectron2 human detection mask, respectively.

estimates of human location, enhancing understanding of
human-object interactions in dynamic scenes.

For this purpose, we employ DSO [35] because this spe-
cific SLAM algorithm provides high discrimination ability
between dynamic and static objects, yielding a reasonably
dense point cloud format obstacle map, as shown in Figure
5. Moreover, it is necessary to note that obstacles positioned
higher than human height do not pose physical cues to
humans. Therefore, specifically, through the following steps,
we generate a two-dimensional high-confidence obstacle
map: (1) Using the torso key points from human pose es-
timation, the estimated distance of humans from the camera
is obtained, and then translated into the 2D space of the
traversability map. The estimated human location area is
painted and defined as “Traversable” in the traversability
map. (2) DSO point clouds that are on the ceiling, floor, and
too far from the camera are filtered out. (3) The traversable
area from both Walk2Map++ and the occlusion reasoning
algorithm is found. The intersection between traversability
maps is updated into the final map.

D. Photometric Cues (PHOT)

Occlusion reasoning poses a persistent challenge in com-
puter vision, with various approaches proposed to tackle it.
Sun et al. introduced a method using layered image motion
with explicit occlusions for depth ordering [36], yet dynamic
scenes with complex geometries and occlusions remain chal-
lenging. Our algorithm, employing both PHYS and PHOT
modules, effectively addresses this challenge. Leveraging
DSO’s point cloud data for precise static object localization
and iterative processing for establishing occlusion cues, we
continuously track human subjects and dynamically update
their locations. By projecting point clouds onto keyframes
and integrating human region data from Detectron2 [37],
our algorithm accurately determines human location, while
also handling scenarios with overlapping human instances by
deferring processing until only one human is detected.

Figure 4 displays a red point at coordinates (xpoint and
ypoint), within the human area defined by (xmin, xmax,
ymin, and ymax). Pedestrians are typically found among
clusters of point clouds, suggesting higher traversability
probabilities in these regions. if xpoint and ypoint fall within
the human area, the point is likely in front of the human.



Fig. 6. Left: Occlusion ordering algorithm; Right: Grouped cluster point
cloud visualized in rviz visualizer. Purple cluster indicate points that are in
front of the human, orange cluster indicate points that are behind of the
human.

(a) (b)

Fig. 7. (a) Online Traversability Map: In our traversability map, the red box
represents the current camera position while the green box represents the
estimated human location. The gray region indicates the human trail, hence
the traversable region. The black lines indicates the obstacles or point cloud
clusters. (b) Observer Robot set up, with a right-facing monocular camera
mounted on the platform of approx. 1m height from ground

The grid map assigns each cell one of these three states:
“traversable”, “untraversable”, or “unknown”. These values
in the grid map are adjusted based on point clusters, aiding
in human location inference.

When the human body is fully occluded or when most of
the body is occluded, the algorithm will wait until the upper
body of the human becomes fully visible or when the human
tracker can track the human again.

E. Asynchronous Map Fusion

For the traversability map reconstruction task to function
as an add-on to an existing online SLAM system and support
incremental map construction, we implement the ability to
dynamically update optimized traversability maps to properly
reflect various asynchronous map optimization events, such
as SLAM loop closures and map merging. Our devised
framework seamlessly integrates modules, DSO [35], Human
pose estimation for human distance estimation, and human
occlusion ordering algorithm. As shown in Equation 2, T1

indicates the traversable map created by Walk2Map++, a hu-
man pose distance estimation method (Section III-B), while
T2 indicates the traversable map created by photometric cues
using a novel human-object occlusion ordering algorithm
(Section III-D).

Tcombined = T1 ∩ T2 (2)

Walk2Map++, PHYS and PHOT mentioned so far all pro-
vide a traversability area relative to the robot pose, so
they are valid even if the robot pose is modified via map
optimization events, there is no need for re-computation.

Fig. 8. Bird’s eye view of obstacles setup of all kinds of configurations,
namely I-Configuration, L-Configuration, and T-Configuration. The gray
rectangle box indicates the point cloud data from DSO, hence the tables
set up. The green trail is the frame positional data from DSO, and the red
triangle is the current camera position, or current frame. Our data collection
process is by using a robot equipped with a monocular camera and taking
a video footage surrounding the set up.

To generate a sparse point cloud map, a video stream is
fed into DSO. Concurrently, these points are projected onto
keyframes. The occlusion ordering algorithm, in tandem
with the Detectron2 [37] human mask and YOLOv7 [38]
human detection model, discerns the occlusion hierarchy of
humans and point cloud. Detectron2’s detection outcomes,
represented by bounding boxes, ascertain the location of the
human body, informing both human pose estimation and
occlusion ordering algorithm modules to predict the human’s
location and consequently determine the traversable region,
as shown in Figure 6. The final prediction of the traversable
region is the intersection of these two areas, culminating in
a cohesive representation within the complete framework, as
shown in Figure 7(a).

For PHYS, the traversability map can be generated on
the fly by considering the point cloud from the DSO map
as obstacles (Untraversable areas). In PHOT, the robot’s
viewpoint provides crucial information for the traversability
map, with the relative position of the human observed in each
frame. Additionally, the traversability map is continuously
updated on the fly.

IV. EXPERIMENTAL RESULTS

A. Data Preparation

We conducted an extensive data collection process to
collect three distinct datasets, each comprising multiple hu-
man subjects and objects simulating crowded scenarios. To
diversify the scenarios, we arranged static objects in various
configurations such as I-Configuration, L-Configuration, and
T-Configuration setup, as shown in Figure 8. All setups were
confined within an area of approximately 6 m × 10 m, with
each data collection session covering a travel distance of 20
m and lasting approximately one minute.

To ensure data quality, we captured all datasets in video
format at a frame rate of 30 frames per second. Tables
of dimensions approximately 80 cm × 60 cm × 250 cm
(Height x Width x Length) were arranged in the experimental
setup to emulate realistic scenarios, as shown in Figure 9. A
monocular camera mounted on the right side of the robot’s
platform of 1 m from the ground efficiently captured high-
quality images and videos of our experimental setup, as
illustrated in Figure 7(b). Video streams were input into DSO



Fig. 9. I-Shape path experimental set up which simulates a crowded indoor
scene.

and results were recorded using the ROS rosbag functionality
to generate corresponding (.bag) files containing exclusive
DSO outputs. Point cloud coordinate information extracted
from DSO outputs facilitated map construction in subsequent
modules.

For map generation, we utilized the ROS map server tool
[39], enabling map creation to facilitate evaluation tests.
Before map evaluation and ablation studies, a ground truth
reference was established by manually annotating the orig-
inal DSO point cloud map. Manual measurements of table
sizes and annotation of ground-truth objects were performed,
followed by post-processing steps including dilation [40],
denoising [41], and C-obstacle [42] analysis to refine the
map and minimize noise, ensuring accuracy and reliability.

B. Performance Index

We employ a journey-based approach [43] for map quality
assessment, a method recognized for its reliability despite
higher computational requirements. This technique evaluates
map quality by simulating realistic path-planning scenarios.
User journeys, defined by distinct start and end points,
are analyzed using shortest-path algorithms. We quantify
errors by comparing each simulated user path to an oracle
path derived from a manually annotated ground truth map,
calculating distances between corresponding waypoints. The
average error is then computed across a large sample of users.
Our custom-developed code optimizes evaluation efficiency
through concurrent analysis of multiple maps, priority as-
signment, and generation of error scores. This comprehensive
methodology ensures thorough and accurate map assessment,
facilitating robust system performance evaluation and pin-
pointing areas for improvement.

The journey-based metrics offer superior confidence
and more realistic utility estimates compared to image
processing-based approximations such as least squares er-
ror. While a potential drawback of this approach is the
unbounded computational cost as map size or user numbers
increase, we found the computation time reasonable within
the scale of our experiments. To further enhance evalua-
tion thoroughness and accuracy, we developed specialized
software capable of concurrent multi-map assessment. This
advanced tool efficiently processes and analyzes numerous
maps simultaneously, assigning priorities and generating
error scores for each. Our sophisticated evaluation method-

ology ensures reliable and precise map assessment, enabling
comprehensive system performance analysis. Moreover, the
parallel evaluation of multiple maps facilitates the rapid iden-
tification of potential issues or discrepancies, allowing for
timely adjustments and optimization of system functionality.

C. Quantitative Evaluation

The existing First-person view IMU method is directly
extended to the camera’s Third-person view and is used as
a baseline method. Furthermore, it is employed for direct
comparisons between the proposed method and the best-
known methods. In this context, we use shorter abbreviations
for better readability: PHYS - Physical Cues, PHOT - Pho-
tometric Cues, W2M - Walk2Map++. By employing various
combinations of modules, we can generate 7 distinct combi-
nations, namely: (PHYS + PHOT + W2M, PHYS + PHOT,
PHYS + W2M, PHOT + W2M, PHYS, PHOT, W2M). Each
of these configurations produces its performance score which
we further evaluate qualitatively.

fEvaluatedError =

∑n
i=1 |pgt[i]− pmap[i]|

N
(3)

To comprehensively evaluate our system, we conducted
independent tests for each combination. We meticulously
recorded the performance metrics and conducted thorough
comparisons. Our experimentation encompassed three di-
verse datasets, and the resulting findings are presented in
Table I. I-Cfg = I-Configuration; L-Cfg = L-Configuration;
T-Cfg = T-Configuration. In this context, a lower average
score indicates a better-performing result. The average per-
formance results are calculated with Equation 3.

From the findings presented in Table I, it shows that the
proposed method (PHYS + PHOT + W2M), consistently de-
livers robust performance across various configurations. Our
method exhibits commendable efficacy even in more intricate
scenarios with increasing complexity from I-configuration to
L-configuration and T-configuration.

Our method surpasses individual traversability maps
(PHYS, PHOT, and W2M) across various data setups. While
PHOT employs an occlusion reasoning algorithm to esti-
mate human position, W2M focuses on translating human
3D location to 2D space for accurate distance estimation.
Combining W2M with PHYS’s point cloud data enhances
human location precision in 2D. Despite challenges like
absent point clouds in PHYS or human location failure
in PHOT, our framework intelligently refrains from gen-
erating traversability maps. In instances of Walk2Map++
malfunction, a map is still produced, though with estimated
human area. Our method ensures reliability and accuracy
by withholding traversability map generation until necessary
conditions are met. By utilizing two keypoints from the
human torso as shown in Figure3(a), we’ve enhanced the
reliability of our estimations. This eliminates the inaccuracies
caused by assuming a fixed height range for humans and
provides a more confident calculation of torso length, leading
to improved accuracy in determining human location.



TABLE I
AVERAGE PERFORMANCE RESULTS.

Average Performance I-Cfg. L-Cfg. T-Cfg.
[44] 2.35 18.68 15.77
PHYS + PHOT + W2M 1.36 12.42 15.45
PHYS + PHOT 1.12 15.43 13.45
PHYS + W2M 3.36 13.22 9.07
PHOT + W2M 4.56 19.23 15.67
PHYS 2.31 18.67 23.45
PHOT 8.66 14.56 18.56
W2M 11.22 12.34 20.45

V. CONCLUSIONS

In conclusion, this paper presents a solution that ad-
dresses the challenges of traversability prediction in dynamic,
human-populated environments, with a focus on enhancing
Human-Robot Interaction (HRI). By leveraging an occlusion
reasoning algorithm and a human pose estimation distance
estimator, our approach extends beyond traditional vSLAM
methods to account for the presence and behavior of humans
in the environment. Through the integration of physical
and photometric cues, we generate a traversability map that
considers human dynamics and spatial relationships.

Our study offers a distinctive approach to HRI by estab-
lishing a relationship between dynamic humans and static
objects to predict traversable regions in indoor scenes. This
method enables robots to navigate crowded spaces more
effectively, leading to smoother and more natural interactions
with humans. The comprehensive prediction of traversable
areas within human-occupied scenes aligns with the need
for richer environmental understanding in HRI scenarios,
especially when limited observations are available.

The promising performance in terms of accuracy and the
quality of the generated traversability map demonstrates the
potential for improving robot navigation in human-centric
environments. This research contributes a unique perspective
to the field of HRI, offering an innovative approach to solving
the traversability prediction problem while considering hu-
man presence and movement patterns. By enhancing robots’
ability to understand and navigate human-populated spaces,
our work paves the way for more seamless and intuitive
human-robot coexistence in various indoor settings.
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