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Abstract—Robot-Assisted Autism Therapy (RAAT) is becom-
ing increasingly popular due to its ability to enhance therapeutic
outcomes for children with autism spectrum disorders (ASD).
RAAT offers consistent, personalized, and engaging interventions,
complementing traditional therapies and supporting social and
cognitive development. However, the rising use of RAAT also
brings challenges for therapists, who must make real-time,
personalized decisions during sessions. This demands a deep
understanding of individual needs and effective strategies, placing
significant cognitive pressure on therapists.

To address these challenges, our research aims to develop an
Al-driven RAAT system that supports therapists by assisting
with decision-making during sessions. By analyzing real-time
data and leveraging prior knowledge, the AI system can suggest
appropriate interventions and adapt strategies to each child’s
specific needs. In this study we apply Deep Active Inference
(dAIF) model to enable the robot to learn and improve its
interventions over time, enhancing the effectiveness of RAAT. The
proposed approach aims to ultimately offer a more personalized
and dynamic therapeutic experience for children with ASD.

Index Terms—Deep Active Inference, Autism Spectrum Disor-
der (ASD), Robot-Assisted Autism Therapy

I. INTRODUCTION

The use of Robot-Assisted Autism Therapy (RAAT) is
rapidly increasing due to its potential to enhance therapeutic
outcomes for children with autism spectrum disorders (ASD).
Its growing popularity can be attributed to its potential to
provide consistent, personalized, and engaging therapeutic
interventions that can complement traditional therapies [1].
Robots used in RAAT are designed to interact with children
in a controlled and repeatable manner, offering unique op-
portunities for social and cognitive development. As a result,
RAAT is being increasingly adopted in therapeutic settings as
an innovative tool to support children with ASD.

However, the increasing use of RAAT presents significant
challenges for specialists, who are often overwhelmed by the
need to make real-time decisions during therapy sessions.
These decisions must account for the child’s immediate re-
sponses, their individual needs, and broader therapeutic goals.
Additionally, therapists must possess a deep understanding
of what strategies would work best for different children,
given the considerable variability in how children with ASD
respond to interventions [2]. This combination of real-time
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decision-making and the need for personalized approaches
could place considerable cognitive demands on therapists,
potentially limiting the effectiveness of RAAT.

Given the above stated challenges, there is a growing need
for Al-driven tools that can assist therapists by supporting
decision-making processes during RAAT sessions. Such assis-
tive tools could be deployed for analyzing data in real time,
suggesting appropriate interventions, and/or adapting strategies
based on the individual needs of each child. By leveraging Al,
therapists can focus more on engaging with the child, while
the Al system provides insights based on prior knowledge and
accumulated data on effective interventions.

Building on this need for Al assistance, our research work
focus on developing an Al-driven RAAT system that incor-
porates both prior knowledge and available data from past
research. For this purpose, we are utilizing an extensive dataset
that comprises 194 therapy sessions involving 34 children [3].
By leveraging the existing data, we could train our Al model
to recognize patterns, which would facilitate further tailoring
interventions to the specific needs of individual child, thus
making therapy sessions more effective and personalized.

Deep Active Inference (dAIF) has emerged as a powerful
framework providing a robust approach to modeling intelligent
behavior in uncertain environments. The Active Inference
approach, first introduced by Friston in [4], is based on the idea
that an agent will perceive and interact with its environment in
a way that minimizes its free energy. This principle integrates
perception, action, and learning, allowing an agent to use a
hierarchical generative model to predict sensory inputs and
adjust its actions to reduce the discrepancy between these
predictions and actual observations. By continuously refining
its generative model and minimizing prediction errors, Active
Inference enables the agent to maintain a representation of the
environment that is both robust and adaptive. dAIF combines
the principles of Active Inference with deep learning, enabling
Active Inference to be scaled up to tasks that are significantly
larger and more complex than those previously addressed
solely by Active Inference [5].

We propose applying dAIF to the RAAT scenario, aiming
to enabling the robot to not only assist in real-time decision-
making but also to learn and improve its interventions over
time. This paper presents initial study of integrating dAIF into
RAAT, focusing on enhancing effectiveness of robot-assisted
therapies for children with autism. Additionally, we explored
different sets of features from our dataset to determine which
combination would yield the best performance. This was done



to ensure that the most relevant and informative features
were used to optimize the model’s ability to make accurate
predictions and adapt its interventions. Feature selection is
crucial in minimizing noise, improving generalization, and
enhancing the overall effectiveness of the robot’s decision-
making process, particularly in a complex and dynamic envi-
ronment like RAAT.

II. DEEP ACTIVE INFERENCE

In our study, we adopted the deep active inference model
presented in [6]. The model couples the free energy princi-
ple with neural networks and utilizes a Partially Observable
Markov Decision Process (POMDP) framework, assuming the
agent does not have full access to the underlying state of the
environment, thus enabling the agent to operate effectively in
complex and uncertain environments. A POMDP is character-
ized by a set of hidden states, actions, observations, a transition
model, an observation model, and a reward function. The agent
maintains a belief, or a probability distribution over possible
hidden states, which it updates based on the observations
it receives over time. This belief-update process enables the
agent to make informed decisions in the face of uncertainty.
The agent’s objective is to minimize its expected free energy
(EFE) into the future. To do this, the agent must evaluate the
EFE for each possible policy, which involves projecting future
states and observations based on its generative model. This re-
quires running the model forward through time to estimate the
potential free energy of each policy. However, computing the
EFE for every policy across large policy spaces or long time
horizons involves significant computation, making the process
intractable for complex environments. To overcome this, deep
Active Inference (dAIF) employs deep neural networks to
approximate the necessary components of EFE calculation,
providing a general scalable approach.

Formally, the agent’s objective can be expressed as:

—F; = —Ey(s)[Inp(ot]s:)] + Drer[q(se)|lp(selst—1, ar-1)]
+ Drcrla(ar]se)||p(at|st)]
ey
where o; is the observation at time ¢, s; is the environment
state, a; is the agent’s action and F(,,) is the expectation over
the variational density ¢(s;).

In [6], each term of Eq. 1 is approximated using neural
networks. The first term is the perception model that rep-
resents mapping of observations to states and is estimated
by a variational autoencoder (VAE). The second term is the
state prediction error, calculated as the Kullback-Leibler (KL)
divergence between the state at time ¢ and the state predicted
at ¢ — 1. To compute this, the agent needs a transition model,
which gives the probability of the current state based on
the previous state and action, and is trained to minimize the
prediction error using a feedforward network. The last term
contains two densities: a value network, which maps a state
action pair to an estimated EFE, and an action model, which
returns a distribution over actions given states.

The complete model is made up of four neural networks that
approximate the components of the variational free energy.

This model not only scales effectively to high-dimensional
spaces but also enhances the agent’s decision-making ca-
pabilities in scenarios where uncertainty plays a significant
role. As a result, the deep active inference model proposed
in [6] is particularly well-suited for human-robot interaction
applications, where inferring internal state of a human for
effective response to inherent uncertainty of its future actions
is a critical challenge.

III. EXPERIMENTAL SETUP
A. Dataset

For this project we used the QAMQOR dataset which was
developed by Zhanatkyzy et al. [7] using video recordings of
34 children with autism during robot-assisted therapy. Their
study involved the development and implementation of 24
diverse robot activities, each with varying levels of social
interaction. These activities were thoroughly analyzed in total
of 194 therapy sessions and about 48 hours of videos. The
dataset includes 2D data of 25 body and leg keypoints, 21
keypoints per hand, and 70 facial keypoints, all extracted
using the OpenPose library [8]. The main aim of the research
was to identify which types of robot activities were most
effective in meeting individual needs and promoting social
and behavioral development among the children. Additionally,
the study explored the relationship between specific child
characteristics and the behavioral outcomes of each activity.
Video data from the sessions were meticulously annotated
frame by frame, with each frame representing one second.
The annotations provide detailed session information, child
attributes, pose landmarks, activity descriptions, and two types
of engagement scores (binary and a five-point scale).

B. Environment

To evaluate the proposed algorithm we developed a cus-
tomized environment implemented using the OpenAl Gym
library [9] and the QAMQOR dataset [7]. The state space
of our environment consists of two distinct elements. The first
element includes variables that remain unchanged throughout
the interaction with a child. These variables - such as age,
ADOS-2 score, the presence of Attention Deficit Hyperactivity
Disorder (ADHD), the child’s compliance status (compliant or
non-compliant), and their verbal proficiency (verbal or nonver-
bal) - are established before the interaction begins. The second
element consists of variables that change dynamically during
the interaction. Specifically, this involves pose landmarks -
body, face, and hands - generated by the OpenPose Library.

The action space is represented by 26 distinct actions. These
categories are grouped into eight main blocks of interaction:
“Dances,” ”Songs,” ”Touch Me,” ”Social Acts,” ”Storytelling,”
“Emotions,” “Imitations,” and “Hello and Bye”. Although
these categories were not used in the current environment,
with distinct activities being employed instead, it may be
worth exploring the use of these categories in future work.
It is important to note that the specific action space can vary
depending on the session ID and child ID, as not every child



participated in all activities, leading to differences in the action
space.

To enable goal-directed behavior in Active Inference, it is
essential to incorporate a representation of a desired state or
goal within the generative model. While reinforcement learn-
ing achieves this through reward functions, Active Inference
uses a prior distribution over expected observations, often
referred to as ’prior preferences’ or a ’goal distribution’. These
prior preferences influence the inference over control states,
guiding the agent to select actions that are likely to lead to
states where preferred observations are expected [4]. In our
environment, however, we opted to use rewards to guide the
agent’s behavior, combining elements of both approaches.

The reward calculation for each step incorporates a thorough
evaluation of both static and dynamic parameters present in the
current state. A key dynamic parameter in this assessment is
the engagement level, which is evaluated by a human expert.
For our preliminary experiments, we used binary engagement
levels, where the engagement level ranges from O to 1 and
corresponds to reward values -1 to 0, respectively. The agent
achieves its target state when the cumulative reward for a
step reaches zero, indicating a successful and desirable action.
This reward calculation determines the target state of the
environment, which is reached when the robot performs all
actions with a reward value of 0. This means the agent has
executed all necessary actions to achieve optimal engagement
from the child.

IV. RESULTS

The training of the dAIF agent was performed on the
environment presented in III-B with four different variations
of a state space. All four versions included all child attributes,
but differed on subsets of incorporated pose landmarks. Only
binary engagement levels were used for reward calculations.
Total reward value, i.e. accumulated reward at each time step,
was used as an evaluation metric. In the first variant (Fig. 1)
we used all pose landmarks (body, left hand, right hand and
face). The second variant uses only face landmarks (Fig. 2).
Face and both left and right hand landmarks were used in the
third variant (Fig. 3), and face and body were used in the last
one (Fig. 4). All four figures (1-4) show the total reward value
(returns) over 5000 training episodes.
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Fig. 1. Total reward value with all body pose landmarks
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Fig. 2. Total reward value with face landmarks
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Fig. 3. Total reward value with face and hands landmarks

Among the four variations of the model, two (all and
face+hands) experienced an initial drop in returns before
quickly recovering and stabilizing close to zero. The other
two models (face and face+body), however, started off with
a stable performance, with returns remaining close to zero
from the very beginning. Despite these differences in the
early stages, all four models ultimately demonstrated similar
long-term behavior, maintaining stable returns near zero with
only minor fluctuations. This consistency across the models
suggests that overall the dAIF agents are capable to reach a
comparable level of stability.

The face+hands version of the model experienced a notably
sharp initial drop, where the returns value plunged close to
-6 at the very beginning. This decline was more pronounced
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Fig. 4. Total reward value with face and body landmarks



compared to the version with all pose landmarks. This might
suggest that using hand landmarks may not be ideal for train-
ing models to recognize engagement. Although it eventually
recovered, this initial difficulty implies that hand landmarks
may introduce noise or complexity that the model struggles to
process effectively.

In contrast, the model that incorporated all possible land-
marks experienced a smaller initial drop, implying a slight
improvement in stability but still showing some signs of initial
difficulty. On the other hand, the models that utilized only face
or face and body landmarks performed more consistently.

These observations indicate that hand landmarks might not
be as reliable or informative for recognizing engagement, po-
tentially complicating the model’s learning process. Focusing
on face and body landmarks alone appears to provide a more
stable and effective foundation for the model, suggesting that
hand landmarks may not contribute positively to engagement
recognition and could even hinder model performance.

V. CONCLUSION AND FUTURE WORK

Despite the differences in how each variation of the model
handled the initial phases of training, all four versions ul-
timately demonstrated promising results during the training
process for estimating child engagement during therapy. While
the models that included hand landmarks faced some initial
instability - especially the one that combined face and hand
landmarks, which experienced a sharp drop in returns - they
all eventually stabilized and delivered consistent results. The
models using only face or face and body landmarks started off
strong and maintained stable performance throughout.

Overall, these results indicate that while the choice of
landmarks can influence the early stages of model training, our
models were able to adapt and achieve reliable performance
in the long run. This suggests that, regardless of the specific
combination of landmarks used, our proposed approach to
recognizing human engagement has high potential for devel-
opment of intelligent assistive tools for RAAT.

As a next work, we will enhance our model by transitioning
from binary classification to a five-point scale for engagement
levels. This approach would allow us to capture a broader
range of engagement, providing a more comprehensive under-
standing of user behavior. Additionally, we plan to compare
our model with classical deep reinforcement learning tech-
niques to assess its performance relative to other approaches.
This comparison will offer valuable insights into the strengths
and potential areas for improvement in our approach, helping
to further refine our active inference model’s ability to recog-
nize human engagement.
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