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Abstract— Social robots are gradually integrating into hu-
man’s daily lives. Storytelling by social robots could bring a
different experience to users through non-verbal and emotional
capabilities compared to text-only one. However, as user needs
and preferences over storytelling might change over time during
long-term interaction with social robots, it is important for
social robots to learn from social interactions with human
users in real-time. In this paper, we propose to allow our
social robot Haru to learn personalized storytelling styles for
different human user’s emotional states via human-centered
reinforcement learning using the reward provided and delivered
by directly interaction with the user explicitly. Results of our
user study show that Haru can learn to adapt its storytelling
style for detected human emotional states in a few number of
interactions, and was perceived to have a better storytelling
performance, experience and impact than a neutral one.

I. INTRODUCTION

As a new type of human emotional companion, social
robots are gradually integrating into human’s daily lives,
which can increase the literacy and creativity by following
social norms in constant interaction with humans [1]. Social
robots can bring a different experience to users through non-
verbal and emotional capabilities [2]. With a figurative form,
storytelling by social robots could be more interesting than
text-only storytelling [3].

For example, the study of Striepe et al. [4] suggested that
careful integration of emotions and non-verbal behaviors like
gaze can enhance the human user’s experience with robot
storytelling. Robot storytelling enriched with gestures and
emotions can also increase the user’s empathy during the
storytelling process [5]. To meet the human user’s need
and create a better experience, Wang et al. proposed an
empathic and adaptive framework for robot storytelling, in
which the robot can imitate the storytelling style and content
of human teachers and provide users with a personalized
storytelling experience [6]. Nichols et al. even proposed
collaborative storytelling with social robot Haru, in which the
robot can collaborate with a human user to create a unique,
improvised story by using a large-scale neural language
model to dynamically generate continuations to a story [7],
[8], [9].

However, user needs and preferences over storytelling
might change over time during long-term interaction with
social robots. Therefore, it is important for social robots
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to learn from social interactions with human users in real-
time [10], [11]. Reinforcement learning (RL) can facilitate
agents to learn behavior policies by interacting with the
environment via trial and error [12], [13], which shares the
same key component — interaction — with social robotics.
Reinforcement learning has been applied to a variety of
scenarios and domains within social robotics with growing
popularity [14]. For example, to improve the engagement in
a joke-telling scenario, Weber et al. [15] allowed the Reeti
robot to learn to adjust its sense of humor during joke-telling
via reinforcement learning. The audience’s voice and visual
smiles which are also part of robot’s state representation are
used as implicit rewards to update the robot’s learning policy.

In the storytelling task, Rudovic et al. [16] proposed a deep
reinforcement learning architecture to learn a personalized
policy to decide whether to estimate the child’s engagement
level or to query a human-expert for a video label in a
child-robot storytelling interaction dataset. However, queried
videos are labeled by a human expert in an offline manner to
personalize the policy and engagement classifier to a target
child over time. Glanz et al. [17] developed a robotic teddy
bear — Robofriend — for telling stories, which can adapt
its behavior to keep children’s attention via reinforcement
learning. However, the storytelling was performed by playing
prerecorded video segments with a still image of one page
in the printed book and a human reading the text on the
page, and there is no text to speech in it. Moreover, the robot
used pre-defined metrics assessing the children’s engagement
by detecting faces and gaze direction as rewards to learn
optimal behaviors, which correspond to different types of
feedback it can give to the children (e.g., asking questions,
positive feedback like ‘great job!’). Most related to our
work, Ritschel et al. [18] proposed a reinforcement Q-
learning approach to adapt the robot’s linguistic style (i.e.,
the extent of extraversion) to keep the user engaged in the
storytelling scenario using change in the engagement as a
reward. The engagement of the user was estimated from the
user’s movement using a Dynamic Bayesian Network. Park
et al. [19] also used reinforcement learning to facilitate a
Tega robot to adapt its storytelling content (i.e., the lexical
and syntactic complexity of a given sentence in a storybook)
in an educational activity where a child and a robot tell
stories to each other. In their work, rewards are extracted
from a pre-defined weighted sum of engagement and lexical
and syntax learning of the user.

The above work tried to maximize user’s engagement
and attention during storytelling using pre-defined metrics to
implicitly extract rewards from estimated engagement. The



extracted rewards are also part representation of robot’s state
and used to update the robot’s policy, which is similar to
traditional reinforcement learning from pre-defined reward
functions. Nichols et al. also used Haru for storytelling, but
it does not learn to adapt to user’s preference via RL.

In this paper, we propose to allow our social robot Haru
to learn personalized storytelling styles for different human
user’s emotional states via human-centered reinforcement
learning using. The rewards used in our work are provided
and delivered by directly interaction with the user explicitly,
which can directly reflect user’s preference and be communi-
cated via different interactive channels, e.g., speech. Results
of our user study show that Haru can learn to adapt its
storytelling style for detected human emotional states in a
few number of interactions, and was perceived to have a
better storytelling performance, experience and impact than
a neutral one.

II. ROBOTIC PLATFORM AND METHODOLOGY

Our goal is to develop an adaptive emotional storytelling
social robot that can tell stories with different styles accord-
ing to detected emotions of a human user. An illustration of
the learning mechanism with our method is shown in Fig. 1.

Fig. 1: Haru learns to adapt its style of storytelling and
select the type of story for detected emotions from evaluative
feedback provided by a human user.

A. Robotic Platform

Haru is an experimental tabletop robot which can be used
to study human-robot emotional interaction research [20]. It
has five degrees of freedom including base rotation, neck
tilt, eye rotation, eye tilt, and eye stroke [21]. Haru’s eyes
are equipped with two three-inch TFT screen displays. In
addition, Haru has stereo speakers and a microphone array,
and its voice varies in intensity, subtlety, etc. Therefore,
Haru can express various emotions through a combination
of sounds, movements, and eyes to achieve reactive empathy
with the user, as shown in Fig. 2. Haru is also equipped with
RGB-D cameras, through which image and depth-sensing
data are processed by designated software module for facial
expression recognition.

Fig. 2: Haru is telling a story to a user in our experiment.

B. Reinforcement Learning Module

A reinforcement learning agent learns optimal policies
mapping from its environmental states to actions through
interaction with the environment via trial and error [12].
Ideally, a deep reinforcement learning method would be used
to learn the mapping from raw facial expressions to optimal
storytelling behaviors. However, this will take a long time
to learn facial features for representing the human user’s
emotional state before it can effectively learn the optimal
behaviors. Therefore, we use the recognised results of the
perceived modality from the perception suite of Haru as
input to the learning system, which could hasten the optimal
behavior learning. Haru can also identify different users with
the perception system. The learning mechanism we used
is human-centered reinforcement learning or human-in-the-
loop reinforcement learning [10]. In this case, the rewards for
learning are not provided by a pre-defined reward function
as the traditional reinforcement learning, but delivered by a
human user.

For simplicity, we used tabular Q-learning [22] as the
learning algorithm in our system. At the beginning, the Q
values for all actions of all states will be initialized to be
0. Then, when Haru detects the current emotional state of
a human user interacting with it, it will randomly select an
action from the action set with equal Q values. For example,
at time step t, Haru detects the human emotional state st and
selects an action randomly at the beginning. Then, the human
user will evaluate the performed action by Haru and provide
binary feedback to it. If the human user approves Haru’s
selected action, she will provide a positive reward (+1); if
she disapproves Haru’s selected action, a negative feedback
(-1) will be provided. The received feedback from the human
user will be perceived as reward R to update corresponding
actions, as below:

Q(st ,at)new =Q(st ,at)old +α(R+γmax
a

Q(st+1,a)−Q(st ,at)),

(1)
where st is the current human emotional state detected by
Haru, at is the performed action by Haru, st+1 is the next
state, γ is the discount factor, α is the learning rate, and
R is the received evaluative feedback from the human user.
Then, at next time step t +1, Haru will detect a new human
emotional state st+1, and selects the action with the largest
Q value, as below:

π(s) : a← argmax
a∈A

Q(st+1,a), (2)



TABLE I: Haru’s state and action space.

Emotional States “Happy”, “Sad”, “Neutral”, “Surprise”

Haru’s Actions

Speed Rate{slow, f ast}
Tone Pitch {low,high}

Type of story {comedy,science f iction,sad}
Movement {smile, idle}

where st+1 is the detected next emotional state of the human
user and A is the action set of possible actions that can be
performed by Haru.

Then, a new cycle of receiving human evaluative feed-
back, updating the corresponding Q-value, detecting new
emotional state of the human user and selecting the action
with the largest Q value starts. Haru will learn as long as it
receives feedback from the human user until she is satisfied
with Haru’s behaviors for detected emotional states.

C. State and Action Space

Ideally, the more are the number of human emotional
states, the better would it fit with the real application
scenarios with our system. However, more human emotional
states mean longer learning time for Haru in our study.
Therefore, for simplicity and to keep the training time within
the human physical endurance in our study, we considered
four easily recognized emotional states for the human user:
Happy, Sad, Neutral, Surprise, as Haru’s possible states. The
four emotional states are detected by Haru in a random order
for each subject. The action of Haru for storytelling can be
represented in four dimensions: speed, tone, type of story
and movement. The speed of Haru storytelling can be slow
or fast and the tone can be low or high. There are three
types of stories can be selected: comedy, science fiction and
sad. The movement of Haru during storytelling can be smile
or idle. Therefore, the action space of Haru storytelling is
24-dimensional, as shown in Table I.

III. EXPERIMENTS

A. Experimental Conditions

Our goal is to facilitate Haru to learn simple autonomous
storytelling behaviors via interacting with the human user
and adapt to their preferences. To this end and as a first
step, we set three experimental conditions:
• Human storyteller condition: the participant watches a

human telling stories;
• Neutral Haru condition: the participant listens to Haru’s

storytelling with a fixed speech rate, intonation, and
movement, the human user can provide feedback to
shape the type of story told by Haru;

• Affective Haru condition: the participant listens to
Haru’s storytelling, the speech rate, intonation, move-
ment and type of story can be shaped by a human user
according to her preference.

In the human storyteller condition, human storytellers nar-
rated stories in three genres: comedy, science fiction and sad,
in a lively and vivid way. The human storyteller condition
was set to test whether participants will perceive Haru’s
storytelling with our method in affective Haru condition

is similar to that of human users. The difference between
neutral Haru and affective Haru is that in neutral Haru
condition, Haru can only learn to select the optimal type of
story with the received feedback from the human user and
tell the selected story with a fixed speech rate, intonation,
and movement, while in the affective Haru condition, the
human user can shape the speech rate, intonation, movement
and type of story for Haru by providing feedback according
to her preference. That is to say, the actions of neural Haru
only include the type of story in Table I.

B. Experimental Setup

In our experiments, participants were asked to imagine
which type of story and the way they would like Haru
to tell stories in various emotional states, and then try to
enact the four emotions and teach Haru appropriate sto-
rytelling behaviors according to their preferences. In the
experiment, Haru first detects the human’s emotional state,
and selects and performs the storytelling behavior with an
initialized policy. The participants listen to the way Haru
telling the story and the content of the storytelling, and
provide feedback to shape Haru’s behavior. Haru will update
its storytelling policy based on the received feedback. Then,
in a new cycle, Haru will detect participants’ new emotional
states, perform storytelling behavior with updated policy and
receive participants’ feedback, until participants are satisfied
with Haru’s storytelling behavior for all emotional states.
Fig. 2 shows Haru’s storytelling to a human user in our
experiment.

We recruited 20 subjects from one university campus for
our study. Of them, 13 are male and 7 are female, aged
from 20 to 26 years old. 3 are novice master students in
robotics but know nothing about the system, 17 are bachelor
students who are ignorant of machine learning and robotics.
Each subject was invited to take part in all three experimental
conditions (within-subject study) and received partial course
credit for taking part in the study. The order in which each
participant took part in the three conditions was randomly
assigned. All participants filled out two questionnaires after
finishing experiments in the three conditions. A third ques-
tionnaire was filled out by participants in the neural Haru
and affective Haru conditions. The first two questionnaires
are from [2], [8], [23] and used to evaluate participants’
perception of storytelling performance and experience. All
questions in the first two questionnaires are on a 5-point
Likert scale. The third questionnaire with four questions is
designed by ourselves to asses and compare the storytelling
impact of neutral Haru and affective Haru. The purpose of
the study was revealed at the end of the study. Due to the
time constraint and the physical endurance of the human
participants, we set the maximum number of interactions to
100 and the whole study lasted for about 1.5 hours.

IV. RESULTS AND DISCUSSION

A. Visualized Learning Process

To better understand Haru’s learning for storytelling from
human feedback, we visualized the learned Q model (i.e.,



Fig. 3: Visualized heat map of Q values for each storytelling action in all emotional states during the training process. Haru’s
behavior was trained by three (P1 P2 P3) of the 20 participants in the affective Haru condition.

the Q value function for all storytelling behaviors) in all
four detected human emotional states every 25 interactions
in a heat map trained by three subjects, as shown in Fig.
3. The horizontal axis represents the four emotional states
of three human users, and the vertical axis represents the
24 possible actions for storytelling in each state. Each block
shows the Q value for an storytelling action in one emotional
state. For easy comparison, all Q values are normalized to the
same scale. The deeper is the block’s color, the larger is the
Q value. Haru will select and execute the storytelling action
with the largest Q value for each emotional state. From Fig. 3
we can see that, as the number of interactions increases, Haru
gradually learned different optimal storytelling behaviors
for the four emotional states according to three subjects’
preferences. For example,in the ‘Happy’ state, P1 preferred
different speeds of storytelling from P3, and different type
of story in the ‘surprise’ state (science fiction by P1 and
comedy by P3.)

B. Number of Feedback

We also analyzed the ratio of positive and negative
feedback provided by all subjects in the neutral Haru and
affective Haru conditions. The training process is divided
into 4 intervals (every 5 interactions for neutral Haru since
only selecting the type of story is needed to learn and it
took only about 20 interactions to learn an optimal behavior,
and every 25 interactions for affective Haru because of the
much longer training time). As shown in Fig. 4, In the first
interval, the participants provided more negative feedback
than positive one, especially for the affective Haru condition.
As Haru learns, the ratio of positive feedback becomes higher
and higher. And during the last interval, almost all feedback
provided by participants was positive one. This is consistent
with the results in Fig. 3, as Haru already learned a stable
policy for storytelling.

Fig. 4: The ratio of positive and negative feedback provided
by all participants every 5 interactions during the training
process in neutral Haru condition and every 25 interactions
during the training process in affective Haru condition.
Note that ‘NH’ represents the Neutral Haru Condition, ‘AH’
represents the Affective Haru condition.

C. Personalization

We analyzed the final optimal storytelling behavior for
all emotional states trained by all participants in affective
Haru condition and found that all participants were trying
to personalize Haru’s behavior. As shown in Fig. 5, the
horizontal axis represents the percentage of each optimal way
of storytelling (low and high tone, slow and fast speech, smile
and idle) trained by the 20 participants for all emotional
states, and the vertical axis represents the four emotional
states. From Fig. 5 we can see that, when participants’
emotional state is ‘happy’, they prefer Haru to tell story in a
fast speed with a high tone and a smile. When the detected
emotional state is ‘sad’, participants prefer Haru to tell the
story in a slow speed with a low tone and a smile. When the
participants’ emotional state is ‘neutral’, they prefer Haru to
tell the story in a slow speed with a low tone and a smile.



For the emotional state of ‘surprise’, participants prefer Haru
to tell the story at a fast speed with a high tone and a smile.

Fig. 5: The percentage of each optimal way of storytelling
trained by the 20 participants for all emotional states in the
affective Haru condition.

In Fig. 6, the horizontal axis represents the percentage
of preferred types of story (comedy, sad, science fiction)
trained by the 20 participants for all emotional states in the
neutral Haru and affective Haru conditions, and the vertical
axis represents the four emotional states. From Fig. 6 we can
see that, participants prefer Haru to tell comedy stories when
their emotional state is ‘happy’, and science fiction stories in
the ‘surprise’ and ‘neutral’ emotional state. However, Haru
was trained to prefer telling sad stories in the ‘sad’ emotional
state, which is a bit surprising since people usually prefer to
cheer up a sad friend, e.g., by telling comedy stories.

Fig. 6: The percentage of preferred types of story trained by
the 20 participants for all emotional states in the neutral and
affective Haru conditions.

D. Storytelling Performance and Experience: Human Story-
teller vs. Neutral Haru vs. Affective Haru

We compared the performance of Haru’s storytelling in
neural Haru condition and affective Haru condition to human
storyteller condition. Haru’s storytelling performance was
assessed by mean scores rated by the 20 participants in
the questionnaire after the study in terms of six aspects:
expressiveness, intelligence level, storytelling effectiveness,
storytelling ability, overall evaluation and degree of popu-
larity, as shown in Fig. 7. We did an n-way analysis of
variance (ANOVA) as well as multiple comparisons tests
(Significance level: p < 0.01) of storytelling performance in
the three conditions. Our ANOVA analysis shows that there is
a significant difference in terms of storytelling performance

TABLE II: The n-way analysis of variance (ANOVA) of
differences in terms of “storytelling performance” between
human storyteller, neutral Haru and affective Haru.

F PR(>F)

C(Condition) 118.74 <0.001

C(Performance) 0.49 0.79

C(Condition): C(Performance) 0.64 0.76

TABLE III: Multiple comparisons of “storytelling perfor-
mance” between human storyteller, neutral Haru and affec-
tive Haru.

Group1 Group2 meandiff p-adj

Human storyteller Neutral Haru -1.56 0.001

Human storyteller Affective Haru -0.25 0.05

Neutral Haru Affective Haru 1.31 0.001

between conditions (p <0.001). Multiple comparisons tests
show that the storytelling performances of human storyteller
and affective Haru were significantly better than the neutral
Haru (p = 0.001 and p = 0.001, respectively), while there
was no significant difference in terms of storytelling perfor-
mance between affective Haru and human storyteller.

Fig. 7: Mean scores of affective Haru, neutral Haru and
human “storytelling performance” rated by the 20 partici-
pants in the questionnaire after the study. Note: black bars
represent standard deviation.

We also did an n-way analysis of variance (ANOVA) as
well as multiple comparisons tests (Significance level: p <
0.01) over participants’ storytelling experience in the three
conditions, which was assessed by comparing mean scores
rated by the 20 participants in the questionnaire after the
study from four perspectives: interestingness, wonderfulness,
pleasure level and enjoyment, as shown in Fig. 8. Our
ANOVA analysis shows that there is a significant difference
in terms of storytelling experience between conditions (p
<0.001). Results of multiple comparisons tests show that the
storytelling experience with human storyteller and affective



TABLE IV: The n-way analysis of variance (ANOVA) of
differences in terms of “storytelling experience” between
human storyteller, neutral Haru and affective Haru.

F PR(>F)

C(Condition) 73.27 <0.001

C(Experience) 0.88 0.45

C(Condition): C(Experience) 0.30 0.94

TABLE V: Multiple comparisons of “storytelling experi-
ence” between human storyteller, neutral Haru and affective
Haru..

Group1 Group2 meandiff p-adj

Human storyteller Neutral Haru -1.35 0.001

Human storyteller Affective Haru 0.15 0.51

Neutral Haru Affective Haru 1.5 0.001

Haru were significantly better than with the neutral Haru
(p = 0.001 and p = 0.001, respectively), while participants
perceived that there was no significant difference in terms
of storytelling experience with affective Haru and human
storyteller.

Fig. 8: Mean scores of affective Haru, neutral Haru and hu-
man “storytelling experience” rated by the 20 participants in
the questionnaire after the study. Note: black bars represent
standard deviation.

E. Storytelling Impact: Affective Haru vs. Neutral Haru

We further evaluated the storytelling impact of the neutral
Haru and affective Haru with four questions in the question-
naire filled by the 20 participants. Fig. 9 shows the mean
scores of the four questions in the questionnaire averaged
over collected data. Student’s t-test was performed to test
the significance of differences between neutral Haru and
affective Haru, as shown in Table VI. From Fig. 9 and
Table VI we can see that, both our affective Haru and
neural Haru can fully explain the story (no significance,
p= 0.22). However, our affective Haru was perceived to have
a significantly clear change in the mood, tone of voice and
expression during storytelling (p < 0.01) and the perceived

TABLE VI: The significance of differences in terms of
“storytelling impact” between neutral Haru and affective
Haru. Significance level: p<0.01.

Question T-Test

Q1 During storytelling, do you feel a change in Haru’s mood, tone of voice and expression? t=8.21, p<0.01

Q2 Do you think Haru’s changing emotions have a positive impact on storytelling? t=4.42, p<0.01

Q3 Do you think Haru can fully explain the story? t=1.24, p=0.22

Q4 Do you think Haru can learn to cater to your preferences t=4.30, p<0.01

changing emotions of our affective Haru had significantly
positive impact on storytelling (p < 0.01). Moreover, our
affective Haru can learn to cater the participants’ preferences
better compared to neural Haru (p < 0.01).

Fig. 9: Mean scores of the four questions in the questionnaire
to measure the “storytelling impact” of neutral Haru and
affective Haru averaged over data collected from the 20
participants. Note: black bars represent standard deviation.

V. CONCLUSION
This paper proposed a human-centered reinforcement

learning approach to facilitate a social robot Haru to learn
personalized storytelling behaviors in terms of speed, tone,
movement and type of story, for detected emotional state of
a human user. The study results show that with the proposed
approach, Haru can learn different behaviors for all detected
moods of human users according to their preferences. Further
analysis of the user study reveals that the storytelling per-
formance, experience and impact of Haru learning with the
proposed method were perceived to be significantly better
than a neutral Haru with fixed speed, tone, movement for
storytelling. We believe our results could generalize to other
social robots, since they can have the same sensors (e.g.,
stereo speakers, microphone array, camera etc.) to perform
the personalized storytelling behaviors. In the future, multi-
modal data to perceive the emotional state of human user will
be used, e.g., content and tone of speech, and we will try to
increase the number of human emotional states and test our
system in a more natural setting. In addition, large language
models will be considered for generating the content of story
based on the human user’s feedback.
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