
BTGenBot: Behavior Tree Generation for Robotic
Tasks with Lightweight LLMs

Riccardo Andrea Izzo
Politecnico di Milano

Milan, Italy
riccardo.izzo@mail.polimi.it

Gianluca Bardaro
Politecnico di Milano

Milan, Italy
gianluca.bardaro@polimi.it

Matteo Matteucci
Politecnico di Milano

Milan, Italy
matteo.matteucci@polimi.it

Abstract—This paper presents a novel approach to generating
behavior trees for robots using lightweight large language models
(LLMs) with a maximum of 7 billion parameters. The study
demonstrates that it is possible to achieve satisfying results with
compact LLMs when fine-tuned on a specific dataset. The key
contributions of this research include the creation of a fine-
tuning dataset based on existing behavior trees using GPT-3.5
and a comprehensive comparison of multiple LLMs (namely
llama2, llama-chat, and code-llama) across nine distinct tasks.
To be thorough, we evaluated the generated behavior trees
using static syntactical analysis, a validation system, a simulated
environment, and a real robot. Furthermore, this work opens
the possibility of deploying such solutions directly on the robot,
enhancing its practical applicability. Findings from this study
demonstrate the potential of LLMs with a limited number of
parameters in generating effective and efficient robot behaviors.

Index Terms—robotics, robot behavior, behavior tree, large
language models

I. INTRODUCTION

In recent years, robots have become an integral part of our
everyday lives, permeating various sectors such as logistics,
manufacturing, and healthcare. The increasing prevalence of
robots in these diverse fields shows the necessity to go beyond
a simple set of functionalities and achieve adaptable, flexible,
and effective task planning. This is necessary to tackle the
challenges of modern robotics, such as dynamic and unstruc-
tured surroundings, unpredictable situations, and advanced
interaction with humans and the environment. To achieve
this, various representations have been proposed to describe
robot tasks [6] and multiple planning languages [3] have
been designed to let experts write complete and descriptive
definitions of high-level tasks.

An example of these representations is behavior trees (BTs).
Behavior trees have gained significant traction in the field of
robotics, offering a structured and scalable approach to man-
aging complex robot behaviors. Originating from the video
game industry, BTs have found relevance in robotics due to
their ability to handle high-level decision-making and control
in dynamic environments. A key player in this transition is
the BehaviorTree.CPP library1. This library has become the
de facto standard in the Robot Operating System 2 (ROS2)
ecosystem, largely due to its inclusion in Navigation2 [12].

1https://www.behaviortree.dev/

This integration has facilitated the development of sophisti-
cated navigation behaviors, contributing to the broader adop-
tion and standardization of BTs in robotics software design.

However, even after a long history of efforts, there is no
definitive solution to equip robots with flexible and adaptable
task planning, since it requires complex knowledge, such as
the robot’s actions, the dynamic nature of the environment,
object relations, and affordances.

Recently, large language models (LLM) trained on large
amounts of data have emerged as a promising tool to man-
age this challenge and deal with the complex knowledge
required for task planning. These models have demonstrated
remarkable success in robot planning from a set of natural
language instructions. Additionally, an LLM can represent
commonsense priors (e.g., visit the colder locations first) and
comprehend spatial relationships (e.g., move behind the sofa).
However, such large models present a significant limitation:
their substantial hardware resource requirements prevent their
direct deployment on robots.

In this work, we explore an alternative approach, focusing
on compact large language models, specifically those with 7
billion parameters. We posit that these smaller models, while
less resource-intensive, can generate behavior trees for robots
with comparable effectiveness to their larger counterparts. Our
main contributions are: (i) a dataset of 600 behavior trees
paired with a natural language description of their tasks, (ii)
a system to evaluate and validate the performance of the gen-
erated BT over nine different tasks including navigation and
manipulation, and (iii) a comparative analysis of three different
LLM and their fine-tuned versions. All the material used in
this work, including the dataset, the complete prompts of both
evaluation phases, and the source code of the validator are
available at https://github.com/AIRLab-POLIMI/BTGenBot.

II. RELATED WORK

A pre-trained foundation model (PFM) refers to a complex
neural network-based model trained on extensive open-source
datasets, boasting billions of parameters [23]. This robust
architecture serves as a versatile backbone that can be further
fine-tuned for diverse tasks across various domains. Recently,
several PFMs specifically trained on massive text datasets (i.e.,
large language models) have been proposed such as the most
recent one GPT-4 [1] by OpenAI or LLaMA by Meta AI [18].

ar
X

iv
:2

40
3.

12
76

1v
1 

 [
cs

.R
O

] 
 1

9 
M

ar
 2

02
4

https://github.com/AIRLab-POLIMI/BTGenBot


In this work, we rely on LLaMA released by Meta AI, a family
of foundation models trained on an open-source dataset with
trillions of tokens. In particular, we employed LLaMA-2 [19],
trained on 2 trillion tokens, and with a context length of 4000
tokens, double the length of its predecessor. Three model sizes
are available: 7, 13, and 70 billion parameters.

Behavior tree generation. An example of behavior tree
generation using LLM is the work done in [11]. In this
paper, the authors exploit a transformer-based LLM fine-tuned
from the Stanford Alpaca 7B model [17] to generate behavior
trees from a text description. They further fine-tuned this
model with natural language descriptions generated using text-
davinci-003 from behavior trees created in the previous step.
In summary, they use two different LLMs to generate both
the behavior trees and the task description. While interesting
in proving that LLMs can be used to generate BTs, this
approach has several limitations. Fine-tuning an LLM with
a dataset generated by the LLM itself causes a data bias
only partially mitigated by the use of an auxiliary LLM to
generate the descriptions. Moreover, self-generated data can
be noisy and, in this configuration, errors propagate from
the data generation phase to the training phase. Differently
from the solution proposed in [11], we create our instruction-
following dataset by collecting behavior trees from open-
source robotics projects. This allows us to fine-tune our model
with BTs already tested and effectively used in real projects.
Moreover, we use GPT-3.5 only to generate descriptions for
each corresponding behavior tree.

Finally, concerning the validation of the above approach,
the only metric used is the visual evaluation by a group of
human experts. The evaluators were presented with a pair of
behavior trees and had to indicate which one was generated.
This evaluation, while interesting and useful to asses the
general capabilities of the model, is rather limited. This
method does not consider the correctness from a syntactical
and semantic point of view, or any performance metric, such
as the generation time and the hardware resources used. In
contrast, we tested our system with a collection of metrics
described in Section III.

Code-based planning. Another approach to defining robot
behaviors using LLM revolves around the direct genera-
tion of executable code. An excellent example is Code as
Policies [10]. In this work, the authors release a robot-
centric formulation of language model generated programs
(i.e., LMPs), based on hierarchical code generation prompting,
that allows the generation of new policy code via recursively
defining undefined functions. LMPs take advantage of few-
shot prompting to generate different subprograms and can
be generated hierarchically with chain-of-thought prompting.
Even if their approach requires no additional training, their
system is based on GPT-3 with 175B parameters. More-
over, they use open-vocabulary object detection models like
ViLD [5] and MDETR [9] to compose perception-to-control
feedback logic. Another work that relies on prompt engineer-
ing to create a Pythonic planner is ProgPrompt [16]. They
introduce a programmatic LLM prompt structure that enables

Fig. 1. Fine-Tuning Process

plan generation functional across situated environments and
robot capabilities. Their fine-tuned version of GPT-2 can
generate plausible action plans in the context of robotic task
planning, this is achieved by providing the model with a
Pythonic program-like specification of the the available actions
and objects in an environment as well as executable example
programs. In this way, they introduce situated awareness in
LLM-based robot task planning via prompting.

Both works described in [10] and [16] benefit from LLMs
with over 100B parameters, while our approach instead lever-
ages smaller models up to only 7B parameters. This allows
our method to be replicable locally on consumer hardware
without relying on larger, more complex models available
via APIs. Additionally, the use of behavior trees gives more
flexibility in terms of expressive ability, represents a plug-
and-play solution as in [13], and is commonly used in recent
open-source robotics projects as demonstrated by [8].

III. METHOD

For the experiments in this work, we considered as refer-
ence models the state-of-the-art open-source large language
models provided by Meta. We selected Llama-2-7b [19],
the foundation model, Llama-2-7b-chat [19], designed for
conversational tasks, and CodeLlama-7b-Instruct [15], with
a focus on code-generation. All of these models are based
on the transformer architecture pioneered in [20]. Following
the approach proposed in [11], we fine-tuned the foundation
model Llama-2-7b with the Alpaca dataset, with the procedure
reported in [17] using the Alpaca-LoRA repository [21]. For
the remainder of this paper, we will refer to this fine-tuned
version as Alpaca. Additional fine-tuning of these models
allows for customization to meet specific requirements, such as
domain specialization, in our case the generation of behavior
trees. A summary of the various fine-tuning steps is presented
in Figure 1, and a more detailed description is provided in
Section III-C.

A. Dataset Format

Each entry of our instruction-following dataset is composed
of three parts: “instruction”, “input” and “output”. While the



original work of [17] states that “input” is optional, in our case,
we combine the XML version of the behavior tree provided
in “output” with the description of the task in the “input” to
create a definition that matches the prompts used later during
inference.

You will be provided a summary of a task performed by a robot, and your
objective is to express this task as a behavior tree in XML format.

The behavior tree is a simple sequential task for a robot. It first instructs the
robot to move to a specific point (GoPoint) and then to interact with a par-
ticular object (GoObject). The robot will execute these tasks in sequence,
moving to the specified destination before interacting with the designated
object.

<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">
<Sequence name="root_sequence">

<GoPoint goal="{destination}"/>
<GoObject target="{object}"/>

</Sequence >
</BehaviorTree >

</root>

This is an example of an entry in the dataset. In gray,
the “instruction” element is common to all the samples in
the dataset, and it is fixed and immutable. It is followed by
the “input” element, in blue, where a description in natural
language is provided of the behavior tree. Finally, the “output”
element represents the behavior tree in XML format. All
the behavior trees used in the dataset are sourced via the
work of [4]. In this work, the authors provide a collection
of roughly 600 behavior trees collected from various open-
source projects in the field of robotics. This dataset is par-
ticularly valuable because compatible with BehaviorTree.CPP,
the de facto standard of ROS2, and the same format used
by [11]. Furthermore, what distinguishes this dataset is the
quality of the behavior trees, which have been developed for
actual applications and tested on robots and thus have already
been validated in real-world scenarios. The natural language
description (i.e., the “input” element) of each entry of the
dataset has been generated automatically using GPT-3.5, with
a procedure described in the next section.

B. Dataset Generation

Recent studies such as [22] and [2] highlight the excep-
tional capabilities of modern LLM, notably GPT, in several
domains including question answering, text generation, and
code generation. GPT models are suitable for text generation
tasks [22] and can be exploited to generate a description
of the provided input. Considering that, we used OpenAI
available APIs to complete our instruction-following dataset.
In particular, the “input” element (i.e., the description of the
behavior tree) has been generated using the gpt-3.5-turbo
model with default parameters and a context length of 2048
tokens. We prompted the model to generate a natural language
description of a behavior tree in XML format received as
input. The one-shot prompt used with gpt-3.5-turbo model to
generate the description of the provided behavior tree is the
same discussed in [17] and it is composed of the following
elements: “system”, “user”, “assistant” and again “user”. The
“system” element is shared between all prompts and represents

the general context given to the model: “You will be provided
a behavior tree in XML format, and your task is to summarize
the task performed by this behavior tree”. The above prompt
represents only the starting point, additional information is
given including the maximum number of words and the
required compatibility with BehaviorTree.CPP library and the
fact that the description must represent an overall summary
of the task clearly described in natural language. This method
ultimately leverages the inherent linguistic capabilities of GPT
models to create a description of the behavior tree. To assess
the quality of the generated descriptions, we sampled a subset
of the results (i.e., roughly ten behavior trees) and evaluated
visually how well the description matched the input BT. The
result of our evaluation was positive, therefore we proceeded
to generate the whole dataset using the procedure described
before.

C. Fine-Tuning Process

The models selected for the fine-tuning process are Llama2-
7b, LlamaChat, and CodeLlama-Instruct-7b. The fine-tuning
process can be structured in two steps, the first one involves
the Llama2-7b model that has been fine-tuned with the original
Alpaca dataset as reported in [7]. This step prepared the
base model for instruction-following tasks, differently from
the other models that are already fine-tuned for this task.
The second step prepared the models for the generation of
the behavior trees. To perform this task, we further fine-tuned
the models using the dataset described in III-A. LLMs fine-
tuning is a computationally intensive task, therefore, we em-
ployed the Parameter-Efficient-Fine-Tuning (PEFT) approach,
in particular, Low-Rank Adaptation (LoRA) described in detail
in [7]. As reported in [14], this is particularly useful to avoid
retraining the entire model from scratch. In this way, we can
keep the model frozen and add an adapter at the end of the
model consisting of a few learnable parameters, and layers.

Regarding LoRA parameters, most of them were set at their
default value, except for the target modules. In the work [7],
it is noted that the transformer architecture has four weight
matrices in the self-attention module (Wq , Wk, Wv , Wo). To
enhance generalization capabilities with our limited dataset
and to optimize performance, it was necessary to unfreeze
the MLP layers. We expanded the corresponding initial set of
weight matrices [q_proj, k_proj, v_proj, o_proj] by adding the
additional weight matrices of the MLP module, these include
[gate_proj, up_proj, down_proj]. This approach led to a more
robust and effective training process.

The fine-tuning process was accomplished with two
NVIDIA RTX Quadro 6000 with a total of 48GB of video
memory. All the basic hyperparameters have been used except
for a batch size of 256 and a micro-batch size of 4, we used a
learning rate of 3e-4 and a validation set size of 5%. Given that
our dataset is composed of less than a thousand samples, we
increased the number of epochs to achieve satisfying results.



IV. EVALUATION

To assess and compare the performance of the three base
models (i.e., Alpaca, LlamaChat, and CodeLlama) and our
fine-tuned versions, we conducted different tests using nine
task descriptions of behavior trees.

A. Task definition

All three models were tested, with the input being the
provided description of the behavior tree. The expected output
is a behavior tree in XML format, compatible with Behav-
iorTree.CPP library, which reflects the provided description.
The tasks used are the following:

1) Navigation. The robot is tasked to reach a series of
locations provided as coordinates in a specific order.

2) Navigation with priority. The system receives a list
of locations and a list of corresponding readings (e.g.,
temperature). Given a threshold, the robot must visit
all locations prioritizing those with a reading above the
threshold.

3) Navigation with fallback. The robot must navigate
through a series of waypoints. During the navigation,
a waypoint may become unreachable. In this case,
the destination must be skipped and the robot should
proceed to the next waypoint.

4) Navigation with arm activity. An extension of the
Navigation task, at each location the robot activates the
on-board manipulator.

5) Exploration. In this situation, the robot navigates con-
tinuously. Periodically, the robot receives a new location
and checks if the exploration routine is completed.

6) Manipulator exploration. A task performed by a ma-
nipulator. The system cycles through multiple joint con-
figurations until a target object is found. When found,
the manipulator approaches the target.

7) Active vision and picking. A robotic arm observes an
object, estimates a grasping position, and performs a
"pick and place" routine.

8) Material processing. A robot manipulator triggers ma-
terial processing by pressing buttons in the correct
sequence. The robot is also in charge of evaluating the
status of the processing.

9) Multi-station assembly. A mobile manipulator moves
between multiple stations to collect components and
assemble an object.

B. Evaluation approach

The evaluation has been accomplished in two separate
phases: the first one represents a preliminary selection among
the models while the second one effectively validates the
models and the generated behavior trees with more rigorous
metrics. In the first phase, we evaluated the models on a subset
of simpler tasks, namely tasks from 1 to 7. In the second phase,
where the general capabilities of the models are already been
assessed, all nine tasks are considered. The metrics considered
in the first evaluation phase are:

Fig. 2. Simulation Environment using TurtleBot3 on Gazebo

Fig. 3. Robot used to test the generated behavior trees

• Time: assess the time performance of the models, this
is crucial when the entire pipeline, from the LLM to the
actual robot, is considered.

• Syntactic Correctness: evaluating the syntactic accuracy
using Groot2, an IDE to create and debug behavior trees
provided by BehaviorTree.CPP. This allows us to check
the syntactic correctness of the XML schema and the
overall tree.

• Semantic Evaluation: without considering the syntactic
correctness, we evaluate the semantic accuracy. This
means the ability of the LLM to generate a solution
that understands and solves the problem at hand. This
evaluation is performed by a group of human experts.

Moving on to the second evaluation phase, we considered
the following metrics:

• BT Correctness: validating the behavior trees using a
custom-developed behavior tree validator

• Simulation robot: verifying the successful execution of
the task on a simulated environment, in particular, the
navigation task has been tested on the TurtleBot3 by
ROBOTIS. See Figure 2.

• Real robot: verifying the successful execution of the task
on the physical robot shown in Figure 3.

C. Preliminary selection

Table I shows the time comparison of execution time while
doing inference on the model, the tests have been conducted on
an NVIDIA RTX Quadro 6000. Considering the models with-
out fine-tuning. When using a zero-shot approach, CodeLlama
overall is faster than LlamaChat, having a similar mean but
less standard deviation. In general, Alpaca is slower and task



TABLE I
TIME COMPARISON

Alpaca LlamaChat CodeLlama

Base, Zero-Shot

Mean - 3m 10s 2m 52s
Std. Dev. - 1m 29s 1m 57s

Fine Tuned, Zero-Shot

Mean - 1m 13s 1m 15s
Std. Dev. - 56s 58s

Base, One-Shot

Mean 1m 42s 3m 54s 1m 49s
Std. Dev. 46s 38s 1m 16s

Fine Tuned, One-Shot

Mean 2m 10s 1m 25s 1m 21s
Std. Dev. 1m 20s 58s 1m 11s

TABLE II
SYNTACTIC EVALUATION (PHASE 1)

Alpaca LlamaChat CodeLlama

Base, Zero-Shot 0% 0% 28%
Fine Tuned, Zero-Shot 14% 71% 86%

Base, One-Shot 71% 86% 100%
Fine Tuned, One-Shot 86% 86% 86%

2 and task 7 do not terminate, therefore, it was not possible
to compute the mean execution time. One-shot prompts are
slightly slower since they have to deal with a more complex
input, CodeLlama and LlamaChat have comparable mean and
standard deviation similar to their zero-shot counterparts. It is
worth noting that LlamaChat becomes rather consistent (i.e.,
low standard deviation) between tasks when using a one-shot
prompt. In this case, Alpaca receives a significant performance
boost, since it can complete all tasks, however it remains
slower in most cases.

Regarding syntactic correctness, we define a behavior tree to
be syntactically correct if successfully recognized by Groot2.
Groot2 checks the correctness of the overall tree for what
concerns Nodes, Decorators, and parameters. All the outputs
of three base models and the corresponding fine-tuned version
with our dataset, both with zero-shot and one-shot prompting,
have been evaluated using Groot2. The results of this evalua-
tion are summarised in Table II.

In terms of accuracy, base models with a zero-shot prompt
achieve very limited results, with only CodeLlama being able
to generate a syntactically correct behavior tree in a very
limited number of cases. Adding examples in the prompt (i.e.,
one-shot) significantly boosts performance, with CodeLlama
managing to create a syntactically correct behavior tree for
each task. A similar result is achieved for fine-tuned models.
In this case, even with a zero-shot prompt, all models can
generate syntactically correct behavior trees for most tasks.
Surprisingly, providing an example does not drastically in-
crease accuracy as before, with the extreme case of CodeLlama

TABLE III
SEMANTIC EVALUATION (PHASE 1)

Alpaca LlamaChat CodeLlama

Base, Zero-Shot 14% 14% 71%
Fine Tuned, Zero-Shot 28% 57% 100%

Base, One-Shot 28% 57% 71%
Fine Tuned, One-Shot 14% 14% 57%

TABLE IV
SYNTACTIC CORRECTNESS (PHASE 2)

LlamaChat CodeLlama

Zero-Shot 88,9% 66,7%
One-Shot 88,9% 88,9%*

* Note: max_new_tokens parameter lim-
ited to 1000, larger values increase accu-
racy

achieving a worse result than before. This result shows how
impactful the choice of examples can be in the generation of
the final result.

Table III summarises the analysis done by human experts on
the semantics of the behavior tree. In this context, by semantic,
we mean the ability of the system to interpret the task defined
in the prompt and create a solution in an XML format that
represents the correct flow of execution. When evaluating the
semantics of a behavior tree, we do not take into account any
syntactic constraint.

As for the previous performance metrics, Alpaca is the least
successful of all models. Values are low for all configurations.
In the case of LlamaChat and CodeLlama, we observe an inter-
esting behavior. When using a zero-shot prompt, performance
increases when the model is fine-tuned. However, when adding
an example in the prompt, performance decreases when using
a fine-tuned model. This result shows again how impactful
prompt design can be in guiding the LLM to achieve the cor-
rect solution. Nonetheless, semantic evaluation is performed
only for the sake of completeness, since it disregards the
syntactic correctness of the tree.

From this initial evaluation phase, we can conclude that in
general, fine-tuned models perform better than base models in
generating behavior trees in an XML format. They are faster
and produce a correct solution more consistently, even with
more complex tasks. The few exceptions are related to the use
of examples in the prompt, and these situations are explored
more in detail in the second evaluation phase. Additionally,
we established that Alpaca, while achieving relatively good
syntactic correctness when provided with examples, has poor
performance across the board. Given these considerations,
in the second phase, we will evaluate only LlamaChat and
CodeLlama fine-tuned, both without and with examples.

D. Validation

During the second evaluation phase, we employed our
custom-developed behavior trees validator to assess the overall



TABLE V
VALIDATION (PHASE 2)

LlamaChat CodeLlama
ZS OS OS+SA ZS OS OS+SA

Task 1 ✓ ✓ ✓ ✓
Task 2 ✓ ✓
Task 3 ✓ ✓ ✓
Task 4 ✓ ✓ ✓ ✓
Task 5 ✓ ✓
Task 6 ✓
Task 7
Task 8 ✓
Task 9

Success rate for behavior trees generated with zero-
shot (ZS), and one-shot (OS) prompts. Additionally, the
results of the corrected BTs are included (OS+SA).

correctness of the nine LLM-generated trees. This validator is
designed to examine and confirm the overall correctness of
the generated behavior trees. Additionally, further tests have
been conducted within a simulation environment, in partic-
ular, we used the TurtleBot3 by ROBOTIS2 for navigation
tasks leveraging the capabilities of Nav2. For this reason, we
developed a simple action client capable of sending navigation
goals. Each action specified in the previous tasks was wrapped
within a corresponding node within the behavior tree. With this
approach, we aimed to ensure the reliability and functionality
of the generated behavior trees in practical scenarios, both in
simulated environments and real-world scenarios.

In this phase, we limited our analysis to the fine-tuned
version of CodeLlama and LlamaChat. The two LLMs are
prompted in the same way as the previous phase, however, we
redesigned the examples in the one-shot prompts to be more
in line with the target task. In practice, this means providing
in the example at least one instance of each action being used
to hint to the LLM the structure (i.e., name and type) of the
parameters.

You will be provided a summary of a task performed by a robot, and your
objective is to express this task as a behavior tree in XML format.

The behavior tree represents a mobile robot tasked to visit two locations:
(7,1) and (4,8). The available actions are: "MoveTo"

<root BTCPP_format="4">
<BehaviorTree >

<Sequence >
<MoveTo x="7" y="1"/>
<MoveTo x="4" y="8"/>

</Sequence >
</BehaviorTree >

</root>

The behavior tree represents a mobile robot tasked to visit a sequence of
locations: ((0,0), (2,3), (4, 7), (5, 11)). The available actions are: "MoveTo"

For example, this is the prompt used for Task 1. On top,
in grey, there is the system prompt used to define the general
task of the LLM. Followed, in blue, by the instruction provided
as an example. This is a simplified version of the target task
where only two locations are visited. Then, the corresponding

2https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

behavior tree where the format of the action is exemplified.
Last, in green, there is the description of Task 1.

As before, first, we evaluate the syntactic correctness of the
behavior trees generated by each model. Table IV shows the
results obtained. LlamaChat, both with zero-shot and one-shot
prompts, is rather consistent and achieves syntactic correctness
for most of the behavior trees. CodeLlama has problems ob-
taining correct results when no example is provided, possibly
because, by being focused on code generation the model was
exposed to more diverse types of behavior trees. Nonetheless,
with a one-shot prompt, CodeLlama only fails to generate a
syntactically correct behavior tree only in one case. It is worth
noting that the failure is caused by reaching the maximum
number of available tokens during generation. This problem
appears when the LLM decomposes the behavior tree in
multiple subtrees causing an unnecessarily lengthy solution.
In general, multiple iterations of the same prompt can be used
to achieve a syntactically correct result.

Table V shows the results obtained after testing the behavior
trees using our validation system. We performed the validation
considering three different outputs. One is the direct output
obtained by using zero-shot prompts, then the output of one-
shot prompts as previously described, and lastly, the output of
one-shot prompts corrected using a basic static analysis. The
result of the static analysis on the behavior tree created using
a zero-shot prompt is not reported since it provides no benefit.

<root BTCPP_format ="4">
<BehaviorTree >
<Sequence >

- <Fallback >
<Sequence >

- <Action ID=" moveToNewConfiguration"
- goal_pose ="{ goal_pose }" />
+ <Action ID=" moveToNewConfiguration" />

<Sequence >
- <Action ID=" CheckForTarget"
- target ="{ target }" />
+ <Action ID=" CheckForTarget" />
- <Fallback >

<Sequence >
- <Action ID=" ApproachTarget"
- target ="{ target }" />
+ <Action ID=" ApproachTarget "/>

</Sequence >
- <Action ID=" MoveBack" />
- </Fallback >

</Sequence >
</Sequence >

- <Action ID=" MoveBack" />
- </Fallback >

</Sequence >
</BehaviorTree >
</root >

This is an example of how behavior trees are corrected
via static analysis. The corrected behavior trees are obtained
by removing the extra parameters from the actions, and by
removing unrecognized actions. In some cases, these changes
lead to empty control sequences that are then removed.

The validation process shows that behavior trees generated
with a zero-shot prompt consistently fail to achieve the target
task. Most of the time this is because there is a mismatch
between the provided parameters and the expected format.



When provided with examples, both models obtain better
results. Simpler tasks that contain basic execution flows are
correctly generated. In more complex tasks that include a
form of control flow (e.g., “During navigation a location may
become unreachable, if this happens, skip it”), the behavior
tree fails because the LLM fails to understand the request
or because actions are added to try to capture this control
flow. In this second case, the behavior tree is successful after
the action is removed via static analysis. In sum, the best
results are achieved by LlamaChat when prompted with an
example and after a cleanup of the behavior tree using static
analysis. When inspecting the results, CodeLlama is more
effective at creating complex and articulated behavior trees,
often including subtrees, and comments. However, it fails to
understand the request provided in the more complex prompts.

V. CONCLUSION

We introduce a novel approach in robotics, enabling large
language models with at most 7 billion parameters to generate
executable behavior trees tailored for robot behaviors. We
conducted a comparative analysis using Alpaca, LlamaChat,
and CodeLlama, to identify the most suitable model for the
task of generating ready-to-use behavior trees. To enhance
the generation capabilities of these base models, we created
a new instruction-following dataset specifically designed for
fine-tuning behavior tree generation. The generated behavior
trees have been evaluated in terms of syntactic accuracy, as-
sessed with Groot2, and semantic accuracy, using our custom-
developed validator. Furthermore, their performance was as-
sessed within a simulation environment and in real-world de-
ployment on a physical robot. Our assessment shows how fine-
tuned models perform better than base models. In particular,
LlamaChat is the best model overall, although CodeLlama still
demonstrated notable performance. This work showcases the
efficiency of compact large language models in directing au-
tonomous agents like robots. Furthermore, behavior trees offer
a flexible solution thanks to their inherent modularity, enabling
seamless expansion through the incorporation of additional
prompts and hence additional robot functionalities. Finally, our
approach offers a plug-and-play solution, to transition from the
LLM to direct execution on the robot.

The main limitation of using an LLM to generate robot
behavior is the challenging tasks of evaluating and validating
the correctness of the solution. In our work we managed to do
so using a custom-developed validator, however, it is limited to
behaviors where the solution is already known. In the future,
we plan to deploy our system directly on the robot, therefore,
we will focus on how to provide an automatic validation of the
generated behavior tree. An option can be the use of milestones
in the task to provide intermediate constraints and validate
simpler behaviors. Alternatively, an auxiliary LLM can be used
to regenerate the description from the XML and compare it
with the original prompt.

The final aim of this work is to provide a direct interface
between a user and the robot. Using this interface, the user
can describe a task using natural language and the robot

will execute it without the need for direct support. Solving
this challenge has significant potential to improve human-
robot interaction and the capabilities of autonomous robots
in a variety of fields such as service robotics, autonomous
industrial inspections, and last-mile logistics.

REFERENCES

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[2] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes
Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li,
Scott Lundberg, et al. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[3] Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio
Pelliccione. Languages for specifying missions of robotic applications.
Software Engineering for Robotics, pages 377–411, 2021.

[4] Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Andrzej Wa-
sowski, and Swaib Dragule. Behavior trees and state machines in
robotics applications. IEEE Transactions on Software Engineering,
49(9):4243–4267, 2023.

[5] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary
object detection via vision and language knowledge distillation. arXiv
preprint arXiv:2104.13921, 2021.

[6] Huihui Guo, Fan Wu, Yunchuan Qin, Ruihui Li, Keqin Li, and Kenli
Li. Recent trends in task and motion planning for robotics: A survey.
ACM Computing Surveys, 2023.

[7] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank
adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

[8] Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ögren, and
Christian Smith. A survey of behavior trees in robotics and ai. Robotics
and Autonomous Systems, 154:104096, 2022.

[9] Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve,
Ishan Misra, and Nicolas Carion. Mdetr-modulated detection for end-
to-end multi-modal understanding. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1780–1790, 2021.

[10] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian
Ichter, Pete Florence, and Andy Zeng. Code as policies: Language model
programs for embodied control. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 9493–9500. IEEE, 2023.

[11] Artem Lykov and Dzmitry Tsetserukou. Llm-brain: Ai-driven fast
generation of robot behaviour tree based on large language model. arXiv
preprint arXiv:2305.19352, 2023.

[12] Steve Macenski, Francisco Martín, Ruffin White, and Jonatan Ginés
Clavero. The marathon 2: A navigation system. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 2718–2725. IEEE, 2020.

[13] Petter Ögren and Christopher I Sprague. Behavior trees in robot control
systems. Annual Review of Control, Robotics, and Autonomous Systems,
5:81–107, 2022.

[14] George Pu, Anirudh Jain, Jihan Yin, and Russell Kaplan. Empirical
analysis of the strengths and weaknesses of peft techniques for llms.
arXiv preprint arXiv:2304.14999, 2023.

[15] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat,
Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
et al. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

[16] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei
Xu, Jonathan Tremblay, Dieter Fox, Jesse Thomason, and Animesh
Garg. Progprompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 11523–11530. IEEE, 2023.

[17] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen
Li, Carlos Guestrin, Percy Liang, and Tatsunori B Hashimoto. Al-
paca: A strong, replicable instruction-following model. Stanford
Center for Research on Foundation Models. https://crfm. stanford.
edu/2023/03/13/alpaca. html, 3(6):7, 2023.



[18] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[19] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[21] Eric Wang. Alpaca-lora. https://github.com/tloen/alpaca-lora, 2023.
[22] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang,

Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican
Dong, et al. A survey of large language models. arXiv preprint
arXiv:2303.18223, 2023.

[23] Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai
Zhang, Cheng Ji, Qiben Yan, Lifang He, et al. A comprehensive survey
on pretrained foundation models: A history from bert to chatgpt. arXiv
preprint arXiv:2302.09419, 2023.


	Introduction
	Related work
	Method
	Dataset Format
	Dataset Generation
	Fine-Tuning Process

	Evaluation
	Task definition
	Evaluation approach
	Preliminary selection
	Validation

	Conclusion
	References

